An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
Studia Mathematica (1998)
- Volume: 129, Issue: 2, page 185-196
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Parts I and II, Ann. of Math. 96 (1972), 98-173. Zbl0248.46019
- [2] J. C. Cabello and E. Nieto, On properties of M-ideals, Rocky Mountain J. Math., to appear. Zbl0936.46014
- [3] J. C. Cabello, E. Nieto and E. Oja, On ideals of compact operators satisfying the M(r,s)-inequality, J. Math. Anal. Appl., to appear. Zbl0917.47040
- [4] C.-M. Cho and W. B. Johnson, A characterization of subspaces X of for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. Zbl0537.47010
- [5] D. Van Dulst, Reflexive and Superreflexive Banach spaces, Math. Centre Tracts 102, Amsterdam, 1978. Zbl0412.46006
- [6] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. Zbl0325.47028
- [7] G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
- [8] G. Godefroy and D. Saphar, Duality in spaces of operators and smooth norms in Banach spaces, Illinois J. Math. 32 (1988), 672-695. Zbl0631.46015
- [9] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. Zbl0545.46009
- [10] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. Zbl0789.46011
- [11] J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. Zbl0464.46020
- [12] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311. Zbl0412.47024
- [13] N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169. Zbl0824.46029
- [14] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263. Zbl0826.46013
- [15] E. Oja, On the uniqueness of the norm-preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat. 33 (1984), 424-438 (in Russian).
- [16] E. Oja, Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246 (in Russian); English transl.: Math. Notes 43 (1988), 134-139.
- [17] E. Oja and D. Werner, Remarks on M-ideals of compact operators on , Math. Nachr. 152 (1991), 101-111. Zbl0744.47039
- [18] R. Payá and W. Werner, An approximation property related to M-ideals of compact operators, Proc. Amer. Math. Soc. 111 (1991), 993-1001. Zbl0744.47040
- [19] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. Zbl0096.31102