An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property

J. Cabello; E. Nieto

Studia Mathematica (1998)

  • Volume: 129, Issue: 2, page 185-196
  • ISSN: 0039-3223

Abstract

top
C.-M. Cho and W. B. Johnson showed that if a subspace E of p , 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with r 2 + s 2 < 1 , the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)⊥ satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of upper p-spaces (e.g. Lorentz sequence spaces d(w, p) and certain renormings of L p ).

How to cite

top

Cabello, J., and Nieto, E.. "An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property." Studia Mathematica 129.2 (1998): 185-196. <http://eudml.org/doc/216498>.

@article{Cabello1998,
author = {Cabello, J., Nieto, E.},
journal = {Studia Mathematica},
keywords = {ideal characterization; -ideal; metric compact approximation property; upper -spaces; Lorentz sequence spaces; renormings of },
language = {eng},
number = {2},
pages = {185-196},
title = {An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property},
url = {http://eudml.org/doc/216498},
volume = {129},
year = {1998},
}

TY - JOUR
AU - Cabello, J.
AU - Nieto, E.
TI - An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 2
SP - 185
EP - 196
LA - eng
KW - ideal characterization; -ideal; metric compact approximation property; upper -spaces; Lorentz sequence spaces; renormings of
UR - http://eudml.org/doc/216498
ER -

References

top
  1. [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Parts I and II, Ann. of Math. 96 (1972), 98-173. Zbl0248.46019
  2. [2] J. C. Cabello and E. Nieto, On properties of M-ideals, Rocky Mountain J. Math., to appear. Zbl0936.46014
  3. [3] J. C. Cabello, E. Nieto and E. Oja, On ideals of compact operators satisfying the M(r,s)-inequality, J. Math. Anal. Appl., to appear. Zbl0917.47040
  4. [4] C.-M. Cho and W. B. Johnson, A characterization of subspaces X of l p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. Zbl0537.47010
  5. [5] D. Van Dulst, Reflexive and Superreflexive Banach spaces, Math. Centre Tracts 102, Amsterdam, 1978. Zbl0412.46006
  6. [6] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. Zbl0325.47028
  7. [7] G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
  8. [8] G. Godefroy and D. Saphar, Duality in spaces of operators and smooth norms in Banach spaces, Illinois J. Math. 32 (1988), 672-695. Zbl0631.46015
  9. [9] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. Zbl0545.46009
  10. [10] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. Zbl0789.46011
  11. [11] J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. Zbl0464.46020
  12. [12] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311. Zbl0412.47024
  13. [13] N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169. Zbl0824.46029
  14. [14] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263. Zbl0826.46013
  15. [15] E. Oja, On the uniqueness of the norm-preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat. 33 (1984), 424-438 (in Russian). 
  16. [16] E. Oja, Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246 (in Russian); English transl.: Math. Notes 43 (1988), 134-139. 
  17. [17] E. Oja and D. Werner, Remarks on M-ideals of compact operators on X p X , Math. Nachr. 152 (1991), 101-111. Zbl0744.47039
  18. [18] R. Payá and W. Werner, An approximation property related to M-ideals of compact operators, Proc. Amer. Math. Soc. 111 (1991), 993-1001. Zbl0744.47040
  19. [19] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. Zbl0096.31102

NotesEmbed ?

top

You must be logged in to post comments.