An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property

J. Cabello; E. Nieto

Studia Mathematica (1998)

  • Volume: 129, Issue: 2, page 185-196
  • ISSN: 0039-3223

Abstract

top
C.-M. Cho and W. B. Johnson showed that if a subspace E of p , 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with r 2 + s 2 < 1 , the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)⊥ satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of upper p-spaces (e.g. Lorentz sequence spaces d(w, p) and certain renormings of L p ).

How to cite

top

Cabello, J., and Nieto, E.. "An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property." Studia Mathematica 129.2 (1998): 185-196. <http://eudml.org/doc/216498>.

@article{Cabello1998,
author = {Cabello, J., Nieto, E.},
journal = {Studia Mathematica},
keywords = {ideal characterization; -ideal; metric compact approximation property; upper -spaces; Lorentz sequence spaces; renormings of },
language = {eng},
number = {2},
pages = {185-196},
title = {An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property},
url = {http://eudml.org/doc/216498},
volume = {129},
year = {1998},
}

TY - JOUR
AU - Cabello, J.
AU - Nieto, E.
TI - An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 2
SP - 185
EP - 196
LA - eng
KW - ideal characterization; -ideal; metric compact approximation property; upper -spaces; Lorentz sequence spaces; renormings of
UR - http://eudml.org/doc/216498
ER -

References

top
  1. [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Parts I and II, Ann. of Math. 96 (1972), 98-173. Zbl0248.46019
  2. [2] J. C. Cabello and E. Nieto, On properties of M-ideals, Rocky Mountain J. Math., to appear. Zbl0936.46014
  3. [3] J. C. Cabello, E. Nieto and E. Oja, On ideals of compact operators satisfying the M(r,s)-inequality, J. Math. Anal. Appl., to appear. Zbl0917.47040
  4. [4] C.-M. Cho and W. B. Johnson, A characterization of subspaces X of l p for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. Zbl0537.47010
  5. [5] D. Van Dulst, Reflexive and Superreflexive Banach spaces, Math. Centre Tracts 102, Amsterdam, 1978. Zbl0412.46006
  6. [6] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. Zbl0325.47028
  7. [7] G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
  8. [8] G. Godefroy and D. Saphar, Duality in spaces of operators and smooth norms in Banach spaces, Illinois J. Math. 32 (1988), 672-695. Zbl0631.46015
  9. [9] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. Zbl0545.46009
  10. [10] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. Zbl0789.46011
  11. [11] J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. Zbl0464.46020
  12. [12] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311. Zbl0412.47024
  13. [13] N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169. Zbl0824.46029
  14. [14] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263. Zbl0826.46013
  15. [15] E. Oja, On the uniqueness of the norm-preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat. 33 (1984), 424-438 (in Russian). 
  16. [16] E. Oja, Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246 (in Russian); English transl.: Math. Notes 43 (1988), 134-139. 
  17. [17] E. Oja and D. Werner, Remarks on M-ideals of compact operators on X p X , Math. Nachr. 152 (1991), 101-111. Zbl0744.47039
  18. [18] R. Payá and W. Werner, An approximation property related to M-ideals of compact operators, Proc. Amer. Math. Soc. 111 (1991), 993-1001. Zbl0744.47040
  19. [19] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. Zbl0096.31102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.