# Property (wM*) and the unconditional metric compact approximation property

Studia Mathematica (1995)

- Volume: 113, Issue: 3, page 249-263
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topLima, Ăsvald. "Property (wM*) and the unconditional metric compact approximation property." Studia Mathematica 113.3 (1995): 249-263. <http://eudml.org/doc/216173>.

@article{Lima1995,

abstract = {The main objective of this paper is to give a simple proof for a larger class of spaces of the following theorem of Kalton and Werner. (a) X has property (M*), and (b) X has the metric compact approximation property Our main tool is a new property (wM*) which we show to be closely related to the unconditional metric approximation property.},

author = {Lima, Ăsvald},

journal = {Studia Mathematica},

keywords = {-ideal; metric compact approximation property; unconditional metric approximation property},

language = {eng},

number = {3},

pages = {249-263},

title = {Property (wM*) and the unconditional metric compact approximation property},

url = {http://eudml.org/doc/216173},

volume = {113},

year = {1995},

}

TY - JOUR

AU - Lima, Ăsvald

TI - Property (wM*) and the unconditional metric compact approximation property

JO - Studia Mathematica

PY - 1995

VL - 113

IS - 3

SP - 249

EP - 263

AB - The main objective of this paper is to give a simple proof for a larger class of spaces of the following theorem of Kalton and Werner. (a) X has property (M*), and (b) X has the metric compact approximation property Our main tool is a new property (wM*) which we show to be closely related to the unconditional metric approximation property.

LA - eng

KW - -ideal; metric compact approximation property; unconditional metric approximation property

UR - http://eudml.org/doc/216173

ER -

## References

top- [1] E. Alfsen and E. Effros, Structure in real Banach spaces, Parts I and II, Ann. of Math. 96 (1972), 98-173. Zbl0248.46019
- [2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, 1973. Zbl0262.47001
- [3] P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: P. F. X. Müller and W. Schachermayer (eds.), Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Math. Soc. Lecture Note Ser. 158, Cambridge University Press, 1990, 49-63. Zbl0743.41027
- [4] H. S. Collins and W. Ruess, Weak compactness in spaces of compact operators and of vector-valued functions, Pacific J. Math. 106 (1983), 45-71. Zbl0488.46057
- [5] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
- [6] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc. Providence, R.I., 1977.
- [7] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. Zbl0325.47028
- [8] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. Zbl0814.46012
- [9] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [10] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264. Zbl0545.46009
- [11] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. Zbl0789.46011
- [12] K. John, On a result of J. Johnson, preprint, 1993.
- [13] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311. Zbl0412.47024
- [14] N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. Zbl0266.47038
- [15] N. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169. Zbl0824.46029
- [16] N. Kalton and D. Werner, Property (M), M-ideals, and almost isometric structure of Banach spaces, preprint, 1993.
- [17] Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62. Zbl0347.46017
- [18] Å. Lima, On M-ideals and best approximation, Indiana Univ. Math. J. 31 (1982), 27-36. Zbl0455.41016
- [19] Å. Lima, The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math. 84 (1993), 451-475. Zbl0814.46016
- [20] Å. Lima, E. Oja, T. S. S. R. K. Rao and D. Werner, Geometry of operator spaces, Michigan Math. J., to appear. Zbl0823.46023
- [21] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977. Zbl0362.46013
- [22] E. Oja, A note on M-ideals of compact operators, Acta et Comment. Univ. Tartuensis 960 (1993), 75/92. Zbl1214.46005
- [23] R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, 1989. Zbl0658.46035
- [24] D. Werner, Denting points in tensor products of Banach spaces, Proc. Amer. Math. Soc. 101 (1987), 122-126. Zbl0647.46018

## Citations in EuDML Documents

top- J. Cabello, E. Nieto, An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
- Kamil John, Dirk Werner, $M$-ideals of compact operators into ${\ell}_{p}$
- Trond A. Abrahamsen, Asvald Lima, Vegard Lima, Unconditional ideals of finite rank operators
- Kamil John, U-ideals of factorable operators
- Åsvald Lima, Eve Oja, Ideals of finite rank operators, intersection properties of balls, and the approximation property
- Rainis Haller, Marje Johanson, Eve Oja, $M(r,s)$-ideals of compact operators

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.