Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen

Studia Mathematica (1999)

  • Volume: 132, Issue: 1, page 79-89
  • ISSN: 0039-3223

Abstract

top
We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

How to cite

top

Pouliquen, Ronan. "Lower bounds for Schrödinger operators in H¹(ℝ)." Studia Mathematica 132.1 (1999): 79-89. <http://eudml.org/doc/216587>.

@article{Pouliquen1999,
abstract = {We prove trace inequalities of type $||u^\{\prime \}||^2_\{L^2\} + ∑_\{j∈ℤ\} k_\{j\} |u(a_j)|^2 ≥ λ ||u||^2_\{L^2\}$ where $u ∈ H^1(ℝ)$, under suitable hypotheses on the sequences $\{a_j\}_\{j∈ℤ\}$ and $\{k_j\}_\{j∈ℤ\}$, with the first sequence increasing and the second bounded.},
author = {Pouliquen, Ronan},
journal = {Studia Mathematica},
keywords = {trace inequalities},
language = {eng},
number = {1},
pages = {79-89},
title = {Lower bounds for Schrödinger operators in H¹(ℝ)},
url = {http://eudml.org/doc/216587},
volume = {132},
year = {1999},
}

TY - JOUR
AU - Pouliquen, Ronan
TI - Lower bounds for Schrödinger operators in H¹(ℝ)
JO - Studia Mathematica
PY - 1999
VL - 132
IS - 1
SP - 79
EP - 89
AB - We prove trace inequalities of type $||u^{\prime }||^2_{L^2} + ∑_{j∈ℤ} k_{j} |u(a_j)|^2 ≥ λ ||u||^2_{L^2}$ where $u ∈ H^1(ℝ)$, under suitable hypotheses on the sequences ${a_j}_{j∈ℤ}$ and ${k_j}_{j∈ℤ}$, with the first sequence increasing and the second bounded.
LA - eng
KW - trace inequalities
UR - http://eudml.org/doc/216587
ER -

References

top
  1. [Al-Ge] S. Albeverio, F. Gesztesy, R. Hοegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics, Springer, Berlin, 1988. Zbl0679.46057
  2. [Fe-Ph] C. Fefferman and D. H. Phong, The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981), 285-331. Zbl0458.35099
  3. [Ga-Ol] G. V. Galunov and V. L. Oleĭnik, Analysis of the dispersion equation for a negative Dirac "comb", St. Petersburg Math. J. 4 (1993), 707-720. 
  4. [Ke-Sa] R. Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 4, 207-228. Zbl0591.47037
  5. [Le-No] N. Lerner and J. Nourrigat, Lower bounds for pseudo-differential operators, ibid. 40 (1990), 657-682. Zbl0703.35182
  6. [Pou] R. Pouliquen, Uncertainty principle and Schrödinger operators with potential localized on hypersurfaces, Preprint Univ. Bretagne Occidentale, Fasc. 5 (1997). 
  7. [Re-Si] M. Reed and B. Simon, Methods of Modern Mathematical Physics II. Fourier Analysis, Self-adjointness, Academic Press, 1972. 
  8. [Str] R. Strichartz, Uncertainty principles in harmonic analysis, J. Funct. Anal. 84 (1989), 97-114. Zbl0682.43005

NotesEmbed ?

top

You must be logged in to post comments.