The trace inequality and eigenvalue estimates for Schrödinger operators

R. Kerman; Eric T. Sawyer

Annales de l'institut Fourier (1986)

  • Volume: 36, Issue: 4, page 207-228
  • ISSN: 0373-0956

Abstract

top
Suppose Φ is a nonnegative, locally integrable, radial function on R n , which is nonincreasing in | x | . Set ( T f ) ( x ) = R n Φ ( x - y ) f ( y ) d y when f 0 and x R n . Given 1 < p < and v 0 , we show there exists C > 0 so that R n ( T f ) ( x ) p v ( x ) d x C R n f ( x ) p d x for all f 0 , if and only if C ' > 0 exists with Q T ( x Q v ) ( x ) p ' d x C ' Q v ( x ) d x < for all dyadic cubes Q, where p ' = p / ( p - 1 ) . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.

How to cite

top

Kerman, R., and Sawyer, Eric T.. "The trace inequality and eigenvalue estimates for Schrödinger operators." Annales de l'institut Fourier 36.4 (1986): 207-228. <http://eudml.org/doc/74736>.

@article{Kerman1986,
abstract = {Suppose $\Phi $ is a nonnegative, locally integrable, radial function on $\{\bf R\}^n$, which is nonincreasing in $\vert x\vert $. Set $ (Tf)(x)=\int _\{R^n\}\Phi (x-y)f(y)dy $ when $f\ge 0$ and $x\in \{\bf R\}^n$. Given $1&lt; p&lt; \infty $ and $v\ge 0$, we show there exists $C&gt;0$ so that $\int _\{\{\bf R\}^n\}(Tf)(x)^pv(x)dx\le C\int _\{\{\bf R\}^n\}f(x)^pdx$ for all $f\ge 0$, if and only if $C^\{\prime \}&gt;0$ exists with $\int _\{Q\}T(x_ Qv)(x)^\{p^\{\prime \}\}dx\le C^\{\prime \}\int _\{Q\}v(x)dx&lt; \infty $ for all dyadic cubes Q, where $p^\{\prime \}=p/(p-1)$. This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.},
author = {Kerman, R., Sawyer, Eric T.},
journal = {Annales de l'institut Fourier},
keywords = {distribution of eigenvalues of Schrödinger operators},
language = {eng},
number = {4},
pages = {207-228},
publisher = {Association des Annales de l'Institut Fourier},
title = {The trace inequality and eigenvalue estimates for Schrödinger operators},
url = {http://eudml.org/doc/74736},
volume = {36},
year = {1986},
}

TY - JOUR
AU - Kerman, R.
AU - Sawyer, Eric T.
TI - The trace inequality and eigenvalue estimates for Schrödinger operators
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 4
SP - 207
EP - 228
AB - Suppose $\Phi $ is a nonnegative, locally integrable, radial function on ${\bf R}^n$, which is nonincreasing in $\vert x\vert $. Set $ (Tf)(x)=\int _{R^n}\Phi (x-y)f(y)dy $ when $f\ge 0$ and $x\in {\bf R}^n$. Given $1&lt; p&lt; \infty $ and $v\ge 0$, we show there exists $C&gt;0$ so that $\int _{{\bf R}^n}(Tf)(x)^pv(x)dx\le C\int _{{\bf R}^n}f(x)^pdx$ for all $f\ge 0$, if and only if $C^{\prime }&gt;0$ exists with $\int _{Q}T(x_ Qv)(x)^{p^{\prime }}dx\le C^{\prime }\int _{Q}v(x)dx&lt; \infty $ for all dyadic cubes Q, where $p^{\prime }=p/(p-1)$. This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.
LA - eng
KW - distribution of eigenvalues of Schrödinger operators
UR - http://eudml.org/doc/74736
ER -

References

top
  1. [1] D. R. ADAMS, A trace inequality for generalized potentials, Studia Math., 48 (1973), 99-105. Zbl0237.46037MR49 #1091
  2. [2] D. R. ADAMS, On the existence of capacitary strong type estimates in Rn, Ark. Mat., 14 (1976), 125-140. Zbl0325.31008MR54 #5822
  3. [3] D. R. ADAMS, Lectures on Lp-potential theory (preprint), Univ. of Umeä, 2 (1981). 
  4. [4] N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials I, Ann. Inst. Fourier, 11 (1961), 385-475. Zbl0102.32401MR26 #1485
  5. [5] S. Y. A. CHANG, J. M. WILSON and T. H. WOLFF, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv., 60 (1985), 217-246. Zbl0575.42025MR87d:42027
  6. [6] S. CHANILLO and R. L. WHEEDEN, Lp estimates for fractional integrals and Sobolev inequalities, with applications to Schrödinger operators, Comm. Partial Differential Equations, 10 (1985), 1077-1116. Zbl0578.46024MR87d:42028
  7. [7] R. COIFMAN and C. FEFFERMAN, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241-250. Zbl0291.44007MR50 #10670
  8. [8] B. DAHLBERG, Regularity properties of Riesz potentials, Ind. U. Math. J., 28 (1979), 257-268. Zbl0413.31003MR80g:31004
  9. [9] E. FABES, C. KENIG and R. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., 7 (1982), 77-116. Zbl0498.35042MR84i:35070
  10. [10] C. L. FEFFERMAN, The Uncertainty Principle, Bull. A.M.S., (1983), 129-206. Zbl0526.35080MR85f:35001
  11. [11] M. De GUZMAN, Differentiation of Integrals in Rn, Lecture Notes in Math., vol. 481, Springer-Verlag, Berlin and New York, 1975. Zbl0327.26010MR56 #15866
  12. [12] K. HANSSON, Continuity and compactness of certain convolution operators, Institut Mittage-Leffler, Report No. 9, (1982). 
  13. [13] R. KERMAN and E. SAWYER, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms and Carleson measures, announcement in Bull. A.M.S., 12 (1985), 112-116. Zbl0564.35027MR86m:35126
  14. [14] V. G. MAZ'YA, On capacitary estimates of the strong type for the fractional norm, Zap. Sen. LOMI Leningrad, 70 (1977), 161 - 168. Zbl0433.46032
  15. [15] B. MUCKENHOUPT and R. L. WHEEDEN, Weighted norm inequalities for fractional integrals, Trans. A.M.S., 192 (1974), 251-275. Zbl0289.26010MR49 #5275
  16. [16] M. REED and B. SIMON, Methods of Mathematical Physics, Vol. I, Academic Press, New York and London, 1972. Zbl0242.46001
  17. [17] E. SAWYER, Weighted norm inequalities for fractional maximal operators, C.M.S. Conf. Proc., 1 (1980), 283-309. Zbl0546.42018MR83k:42020a
  18. [18] E. SAWYER, A characterization of a two-weight norm inequality for maximal operators, Studia Math., 75 (1982), 1-11. Zbl0508.42023MR84i:42032
  19. [19] E. M. STEIN, The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961), 102-104, II (IBID), 68 (1962), 577-582. Zbl0127.32002
  20. [20] E. M. STEIN, Singular Integrals and Differentiability Properties of Functions, 2nd edition, Princeton University Press, 1970. Zbl0207.13501MR44 #7280
  21. [21] J.-O. STRÖMBERG and R. L. WHEEDEN, Fractional integrals on weighted Hp and Lp spaces, Trans. Amer. Math., Soc., 287 (1985), 293-321. Zbl0524.42011

Citations in EuDML Documents

top
  1. Yuri V. Egorov, Sur des estimations des valeurs propres d'opérateurs elliptiques
  2. Ronan Pouliquen, Lower bounds for Schrödinger operators in H¹(ℝ)
  3. Zhongwei Shen, The magnetic Schrödinger operator and reverse Hölder class
  4. Vladimir Maz'ya, Igor Verbitsky, The form boundedness criterion for the relativistic Schrödinger operator
  5. Yves Rakotondratsimba, A two-weight inequality for the Bessel potential operator
  6. Mohammed El Aïdi, Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.
  7. Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.