The Martingale Problem in Hilbert Spaces
Giuseppe Da Prato; Luciano Tubaro
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 839-855
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDa Prato, Giuseppe, and Tubaro, Luciano. "The Martingale Problem in Hilbert Spaces." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 839-855. <http://eudml.org/doc/290491>.
@article{DaPrato2008,
abstract = {We consider an SPDE in a Hilbert space $H$ of the form $dX(t) = ( AX(t) + b(X(t)) ) \, dt + \sigma(X(t)) \, dW(t)$, $X(0) = x \in H$ and the corresponding transition semigroup $P_t f (x)= \mathbb\{E\}[ f(X(t, x)) ]$. We define the infinitesimal generator $\bar L$ of $P_t$ through the Laplace transform of $P_t$ as in [1]. Then we consider the differential operator $L\varphi = \frac\{1\}\{2\} \operatorname\{Tr\}[\sigma(x)\sigma^*(x)D^2\varphi] + \langle b(x), D\varphi \rangle$ defined on a suitable set $V$ of regular functions. Our main result is that if $V$ is a core for $\bar L$, then there exists a unique solution of the martingale problem defined in terms of $L$. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.},
author = {Da Prato, Giuseppe, Tubaro, Luciano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {839-855},
publisher = {Unione Matematica Italiana},
title = {The Martingale Problem in Hilbert Spaces},
url = {http://eudml.org/doc/290491},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Da Prato, Giuseppe
AU - Tubaro, Luciano
TI - The Martingale Problem in Hilbert Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 839
EP - 855
AB - We consider an SPDE in a Hilbert space $H$ of the form $dX(t) = ( AX(t) + b(X(t)) ) \, dt + \sigma(X(t)) \, dW(t)$, $X(0) = x \in H$ and the corresponding transition semigroup $P_t f (x)= \mathbb{E}[ f(X(t, x)) ]$. We define the infinitesimal generator $\bar L$ of $P_t$ through the Laplace transform of $P_t$ as in [1]. Then we consider the differential operator $L\varphi = \frac{1}{2} \operatorname{Tr}[\sigma(x)\sigma^*(x)D^2\varphi] + \langle b(x), D\varphi \rangle$ defined on a suitable set $V$ of regular functions. Our main result is that if $V$ is a core for $\bar L$, then there exists a unique solution of the martingale problem defined in terms of $L$. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.
LA - eng
UR - http://eudml.org/doc/290491
ER -
References
top- CERRAI, S., A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum49, no. 3, 349-367, 1994. Zbl0817.47048MR1293091DOI10.1007/BF02573496
- DA PRATO, G. - SINESTRARI, E., Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14, no. 2 (1987), 285-344. Zbl0652.34069MR939631
- DA PRATO, G. - TUBARO, L., Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126 (2001), 685-699. Zbl0996.47028MR1864036DOI10.1023/A:1013704610695
- DA PRATO, G. - ZABCZYK, J., Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. MR1207136DOI10.1017/CBO9780511666223
- DA PRATO, G. - ZABCZYK, J., Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society, Lecture Notes, 293, Cambridge University Press, 2002. Zbl1012.35001MR1985790DOI10.1017/CBO9780511543210
- DAVIES, E.B., One parameter semigroups, Academic Press, 1980. Zbl0457.47030MR591851
- DYNKIN, E.B., Markov processes and semigroups of operators. Theory of Probability and its Appl., 1, no. 1 (1956), 22-33. MR88104
- ETHIER, S.N. - KURTZ, T., Markov processes. Characterization and convergence, Wiley series in probability and mathematical statistics, 1986. MR838085DOI10.1002/9780470316658
- FLANDOLI, F. - GATAREK, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Prob. Theory Relat. Fields, 102, (1995), 367-391. Zbl0831.60072MR1339739DOI10.1007/BF01192467
- GOLDYS, B. - KOCAN, M., Diffusion semigroups in spaces of continuous functions with mixed topology. J. Diff. Equations, 173, (2001), 17-39. Zbl1003.60070MR1836243DOI10.1006/jdeq.2000.3918
- KÜHNEMUND, F., A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67, no. 2 (2003), 205-225. MR1987498DOI10.1007/s00233-002-5000-3
- LIGGETT, T.M., Interacting particle systems. Fundamental Principles of Mathematical Sciences, 276. Springer-Verlag, New York, 1985. Zbl0559.60078MR776231DOI10.1007/978-1-4613-8542-4
- METIVIER, M., Stochastic partial differential equations in infinite-dimensional spaces. Scuola Normale Superiore di Pisa, 1988. Zbl0664.60062MR982268
- MIKULEVICIUS, R. - ROZOVSKII, B. L., Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243-325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. Zbl0938.60047MR1661767DOI10.1090/surv/064/06
- PRIOLA, E., On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math., 136, no. 3 (1999), 271-295. Zbl0955.47024MR1724248DOI10.4064/sm-136-3-271-295
- STROOCK, D. W. - VARADHAN, S. R. S., Multidimensional Diffusion Processes, Springer-Verlag, 1979. Zbl0426.60069MR532498
- VIOT, M., Solutions faibles d'equations aux dérivées partielles stochastiques non linéaires. Thése de Doctorat d'État, 1976. MR610619
- YOR, M., Existence et unicité de diffusions á valeurs dans un espace de Hilbert. Ann. Inst. H. Poincaré, 10 (1974), 55-88. Zbl0281.60094MR356257
- YOSIDA, K., Functional analysis, Springer-Verlag, 1965. MR180824
- ZAMBOTTI, L., A new approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Th. Relat. Fields, 118 (2000), 147-168. Zbl0963.60059MR1790079DOI10.1007/s440-000-8012-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.