The Martingale Problem in Hilbert Spaces

Giuseppe Da Prato; Luciano Tubaro

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 3, page 839-855
  • ISSN: 0392-4041

Abstract

top
We consider an SPDE in a Hilbert space H of the form d X ( t ) = ( A X ( t ) + b ( X ( t ) ) ) d t + σ ( X ( t ) ) d W ( t ) , X ( 0 ) = x H and the corresponding transition semigroup P t f ( x ) = 𝔼 [ f ( X ( t , x ) ) ] . We define the infinitesimal generator L ¯ of P t through the Laplace transform of P t as in [1]. Then we consider the differential operator L φ = 1 2 Tr [ σ ( x ) σ * ( x ) D 2 φ ] + b ( x ) , D φ defined on a suitable set V of regular functions. Our main result is that if V is a core for L ¯ , then there exists a unique solution of the martingale problem defined in terms of L . Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.

How to cite

top

Da Prato, Giuseppe, and Tubaro, Luciano. "The Martingale Problem in Hilbert Spaces." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 839-855. <http://eudml.org/doc/290491>.

@article{DaPrato2008,
abstract = {We consider an SPDE in a Hilbert space $H$ of the form $dX(t) = ( AX(t) + b(X(t)) ) \, dt + \sigma(X(t)) \, dW(t)$, $X(0) = x \in H$ and the corresponding transition semigroup $P_t f (x)= \mathbb\{E\}[ f(X(t, x)) ]$. We define the infinitesimal generator $\bar L$ of $P_t$ through the Laplace transform of $P_t$ as in [1]. Then we consider the differential operator $L\varphi = \frac\{1\}\{2\} \operatorname\{Tr\}[\sigma(x)\sigma^*(x)D^2\varphi] + \langle b(x), D\varphi \rangle$ defined on a suitable set $V$ of regular functions. Our main result is that if $V$ is a core for $\bar L$, then there exists a unique solution of the martingale problem defined in terms of $L$. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.},
author = {Da Prato, Giuseppe, Tubaro, Luciano},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {839-855},
publisher = {Unione Matematica Italiana},
title = {The Martingale Problem in Hilbert Spaces},
url = {http://eudml.org/doc/290491},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Da Prato, Giuseppe
AU - Tubaro, Luciano
TI - The Martingale Problem in Hilbert Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 839
EP - 855
AB - We consider an SPDE in a Hilbert space $H$ of the form $dX(t) = ( AX(t) + b(X(t)) ) \, dt + \sigma(X(t)) \, dW(t)$, $X(0) = x \in H$ and the corresponding transition semigroup $P_t f (x)= \mathbb{E}[ f(X(t, x)) ]$. We define the infinitesimal generator $\bar L$ of $P_t$ through the Laplace transform of $P_t$ as in [1]. Then we consider the differential operator $L\varphi = \frac{1}{2} \operatorname{Tr}[\sigma(x)\sigma^*(x)D^2\varphi] + \langle b(x), D\varphi \rangle$ defined on a suitable set $V$ of regular functions. Our main result is that if $V$ is a core for $\bar L$, then there exists a unique solution of the martingale problem defined in terms of $L$. Application to the Ornstein-Uhlenbeck equation and to some regular perturbation of it are given.
LA - eng
UR - http://eudml.org/doc/290491
ER -

References

top
  1. CERRAI, S., A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum49, no. 3, 349-367, 1994. Zbl0817.47048MR1293091DOI10.1007/BF02573496
  2. DA PRATO, G. - SINESTRARI, E., Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14, no. 2 (1987), 285-344. Zbl0652.34069MR939631
  3. DA PRATO, G. - TUBARO, L., Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126 (2001), 685-699. Zbl0996.47028MR1864036DOI10.1023/A:1013704610695
  4. DA PRATO, G. - ZABCZYK, J., Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. MR1207136DOI10.1017/CBO9780511666223
  5. DA PRATO, G. - ZABCZYK, J., Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society, Lecture Notes, 293, Cambridge University Press, 2002. Zbl1012.35001MR1985790DOI10.1017/CBO9780511543210
  6. DAVIES, E.B., One parameter semigroups, Academic Press, 1980. Zbl0457.47030MR591851
  7. DYNKIN, E.B., Markov processes and semigroups of operators. Theory of Probability and its Appl., 1, no. 1 (1956), 22-33. MR88104
  8. ETHIER, S.N. - KURTZ, T., Markov processes. Characterization and convergence, Wiley series in probability and mathematical statistics, 1986. MR838085DOI10.1002/9780470316658
  9. FLANDOLI, F. - GATAREK, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Prob. Theory Relat. Fields, 102, (1995), 367-391. Zbl0831.60072MR1339739DOI10.1007/BF01192467
  10. GOLDYS, B. - KOCAN, M., Diffusion semigroups in spaces of continuous functions with mixed topology. J. Diff. Equations, 173, (2001), 17-39. Zbl1003.60070MR1836243DOI10.1006/jdeq.2000.3918
  11. KÜHNEMUND, F., A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67, no. 2 (2003), 205-225. MR1987498DOI10.1007/s00233-002-5000-3
  12. LIGGETT, T.M., Interacting particle systems. Fundamental Principles of Mathematical Sciences, 276. Springer-Verlag, New York, 1985. Zbl0559.60078MR776231DOI10.1007/978-1-4613-8542-4
  13. METIVIER, M., Stochastic partial differential equations in infinite-dimensional spaces. Scuola Normale Superiore di Pisa, 1988. Zbl0664.60062MR982268
  14. MIKULEVICIUS, R. - ROZOVSKII, B. L., Martingale problems for stochastic PDE's. Stochastic partial differential equations: six perspectives, 243-325, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999. Zbl0938.60047MR1661767DOI10.1090/surv/064/06
  15. PRIOLA, E., On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions. Studia Math., 136, no. 3 (1999), 271-295. Zbl0955.47024MR1724248DOI10.4064/sm-136-3-271-295
  16. STROOCK, D. W. - VARADHAN, S. R. S., Multidimensional Diffusion Processes, Springer-Verlag, 1979. Zbl0426.60069MR532498
  17. VIOT, M., Solutions faibles d'equations aux dérivées partielles stochastiques non linéaires. Thése de Doctorat d'État, 1976. MR610619
  18. YOR, M., Existence et unicité de diffusions á valeurs dans un espace de Hilbert. Ann. Inst. H. Poincaré, 10 (1974), 55-88. Zbl0281.60094MR356257
  19. YOSIDA, K., Functional analysis, Springer-Verlag, 1965. MR180824
  20. ZAMBOTTI, L., A new approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Th. Relat. Fields, 118 (2000), 147-168. Zbl0963.60059MR1790079DOI10.1007/s440-000-8012-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.