Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities

M. F. Barnsley; S. G. Demko; J. H. Elton; J. S. Geronimo

Annales de l'I.H.P. Probabilités et statistiques (1988)

  • Volume: 24, Issue: 3, page 367-394
  • ISSN: 0246-0203

How to cite

top

Barnsley, M. F., et al. "Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities." Annales de l'I.H.P. Probabilités et statistiques 24.3 (1988): 367-394. <http://eudml.org/doc/77331>.

@article{Barnsley1988,
author = {Barnsley, M. F., Demko, S. G., Elton, J. H., Geronimo, J. S.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {invariant measures; discrete-time Markov process; Perron-Frobenius theory; weakly almost-periodic Markov operators},
language = {eng},
number = {3},
pages = {367-394},
publisher = {Gauthier-Villars},
title = {Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities},
url = {http://eudml.org/doc/77331},
volume = {24},
year = {1988},
}

TY - JOUR
AU - Barnsley, M. F.
AU - Demko, S. G.
AU - Elton, J. H.
AU - Geronimo, J. S.
TI - Invariant measures for Markov processes arising from iterated function systems with place-dependent probabilities
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1988
PB - Gauthier-Villars
VL - 24
IS - 3
SP - 367
EP - 394
LA - eng
KW - invariant measures; discrete-time Markov process; Perron-Frobenius theory; weakly almost-periodic Markov operators
UR - http://eudml.org/doc/77331
ER -

References

top
  1. [B] H. Brolin, Invariant Set Under Iteration of Rational Functions, Arkiv für Matematik, Vol. 6, 1965, pp. 103-144. Zbl0127.03401MR194595
  2. [BD] M.F. Barnsley and S. Demko, Iterated Functions Systems and the Global Construction of Fractals, Proc. R. Soc.London, Vol. A 399, 1985, pp. 243-275. Zbl0588.28002MR799111
  3. [BGM] D. Bessis, J.S. Geronimo and P. Moussa, Function Weighted Measures and Orthogonal Polynomials on Julia Sets, Const. Approx. (to appear). Zbl0635.42021
  4. [BE] M.F. Barnsley and J. Elton, Stationary Attractive Measures for a Class of Markov Chains Arising from Function Iteration, Adv. Appl. Prob., March 1988 (to appear). 
  5. [BM] R.R. Bush and F. Mosteller, A Stochastic Model with Applications to Learning, Ann. Math. Statist., Vol. 24, 1953, pp. 449-585. Zbl0051.35604MR58909
  6. [DHN] S. Demko, L. Hodges and B. Naylor, Construction of Fractal Objects with Iterated Function Systems, SIGGRAPH '85 Proceedings, 1985, pp. 271-278. 
  7. [DF] L. Dubins and D. Freedman, Invariant Probabilities for Certain Markov Processes, Ann. Math. Stat., Vol. 37, 1966, pp. 837-848. Zbl0147.16404MR193668
  8. [DS] P. Diacones and M. Shahshahani, Products of Random Matrices and Computer Image generation, in Random Matrices and Their Applications, Vol. 50, Cont. Math. A.M.S., Providence, R.I., 1986. Zbl0601.60066MR841091
  9. [DoF] W. Doeblin and R. Fortet, Sur des chaines à liaisons complètes, Bull. Soc. Math. de France, Vol. 65, 1937, pp. 132-148. Zbl0018.03303MR1505076JFM63.1077.05
  10. [DuS] N. Dunford and J. Schwartz, Linear Operators, Wiley, New York, 1958. 
  11. [DU] J. Diestel and J.J. Uhl, Vector Measures, American Mathematical Society, 1977. Zbl0369.46039MR453964
  12. [E] J.H. Elton, An Ergodic Theorem for Iterated Maps, Ergod. Th. and Dyna Sys., Vol. 7, 1987 (to appear). Zbl0621.60039MR922361
  13. [FLM] A. Freire, A. Lopes and R. Mañé, An Invariant Measure for Rational Maps, Bol. Soc. Bras. Mat., Vol. 14, 1983, pp. 45-62. Zbl0568.58027MR736568
  14. [G] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1977. Zbl0085.01001
  15. [H] J. Hutchinson, Fractals and Self-Similarity, Indiana U. J. of Math., Vol. 30, 1981, pp. 713-747. Zbl0598.28011MR625600
  16. [HS] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1969. Zbl0225.26001MR367121
  17. [IT] C. Iionescu Tulcea, On a Class of Operators Occurring in the Theory of Chains of Infinite Order, Can. J. Math., Vol. 11, 1959, pp. 112-121. Zbl0086.12001MR101569
  18. [ITM] C. Ionescu and G. Marinescu, Sur certaines chaines à liaisons complètes, C. R. Acad. Sci. Paris, T. 227, 1948, pp. 667-669. [J] B. Jamison, Irreducible Markov Operators on C(S), Proc. Am. Math. Soc., Vol. 24, 1970, pp. 366-370. Zbl0035.35703MR27468
  19. [JS] B. Jamison and R. Sine, Irreducible Almost Periodic Markov Operators, J. Math. Mech., Vol. 18, 1969, p. 1043-1057. Zbl0266.60056MR242257
  20. [K] S. Karlin, Some Random Walks Arising in Leaening Models, Pac. J. Math., Vol. 3, 1953, pp. 725-756. Zbl0051.10603MR58910
  21. [Kr] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985. Zbl0575.28009MR797411
  22. [L] M.J. Ljubich, Entropy Properties of Rational Endomorphisms of the Riemann Sphere, Ergod. Th. Dynam. Sys., Vol. 3, 1983, pp. 351-385. Zbl0537.58035MR741393
  23. [Lor] G.G. Lorentz, Approximation of Functions, Holt, Reinhardt, and Winston, N. Y., 1966. Zbl0153.38901MR213785
  24. [LY] A. Lasota and J.A. Yorke, On the Existence of Invariant Measures for Piecewise Monotonic Transformations, Trans. Am. Math. Soc., Vol. 186, 1973, pp. 481-488. Zbl0298.28015MR335758
  25. [NJ E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, CambridgeU. Press, Cambridge, 1985. Zbl0551.60066
  26. [OM] O. Onicescu and G. Mihoc, Sur les chaînes de variables statistiques, Bull. Soc. Math. de France, Vol. 59, 1935, pp. 174-192. Zbl0012.02804JFM61.0563.02
  27. [R] M. Rosenblatt, Equicontinuous Markov Operators, Theor. Prob. and its Appl., Vol. 9, 1964, pp. 180-197 (translation of Theor. Verojatnost. i Primenen). Zbl0133.40101MR171318
  28. [S] R. Sine, Convergence Theorems for Weakly Almost Periodic Markov Operators, Israel J. Math., Vol. 19, 1974, pp. 246-255. Zbl0309.60048MR372159

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.