On almost-Riemannian surfaces
- [1] Department of Mathematical Sciences and Centre of Computational and Integrative Biology, Rutgers University Camden - Camden, 311 N 5th Street, Camden, NJ 08102, USA.
Séminaire de théorie spectrale et géométrie (2010-2011)
- Volume: 29, page 15-49
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topGhezzi, Roberta. "On almost-Riemannian surfaces." Séminaire de théorie spectrale et géométrie 29 (2010-2011): 15-49. <http://eudml.org/doc/219671>.
@article{Ghezzi2010-2011,
abstract = {An almost-Riemannian structure on a surface is a generalized Riemannian structure whose local orthonormal frames are given by Lie bracket generating pairs of vector fields that can become collinear. The distribution generated locally by orthonormal frames has maximal rank at almost every point of the surface, but in general it has rank 1 on a nonempty set which is generically a smooth curve. In this paper we provide a short introduction to 2-dimensional almost-Riemannian geometry highlighting its novelties with respect to Riemannian geometry. We present some results that investigate topological, metric and geometric aspects of almost-Riemannian surfaces from a local and global point of view.},
affiliation = {Department of Mathematical Sciences and Centre of Computational and Integrative Biology, Rutgers University Camden - Camden, 311 N 5th Street, Camden, NJ 08102, USA.},
author = {Ghezzi, Roberta},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {almost-Riemannian geometry; geodesics; Grushin plane; Lipschitz classification; Pontryagin maximum principle; Gauss-Bonnet formula},
language = {eng},
pages = {15-49},
publisher = {Institut Fourier},
title = {On almost-Riemannian surfaces},
url = {http://eudml.org/doc/219671},
volume = {29},
year = {2010-2011},
}
TY - JOUR
AU - Ghezzi, Roberta
TI - On almost-Riemannian surfaces
JO - Séminaire de théorie spectrale et géométrie
PY - 2010-2011
PB - Institut Fourier
VL - 29
SP - 15
EP - 49
AB - An almost-Riemannian structure on a surface is a generalized Riemannian structure whose local orthonormal frames are given by Lie bracket generating pairs of vector fields that can become collinear. The distribution generated locally by orthonormal frames has maximal rank at almost every point of the surface, but in general it has rank 1 on a nonempty set which is generically a smooth curve. In this paper we provide a short introduction to 2-dimensional almost-Riemannian geometry highlighting its novelties with respect to Riemannian geometry. We present some results that investigate topological, metric and geometric aspects of almost-Riemannian surfaces from a local and global point of view.
LA - eng
KW - almost-Riemannian geometry; geodesics; Grushin plane; Lipschitz classification; Pontryagin maximum principle; Gauss-Bonnet formula
UR - http://eudml.org/doc/219671
ER -
References
top- A. Agrachev, Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Sem. Mat. Univ. Politec. Torino 56 (1998), 1-12 (2001) Zbl1039.53038MR1845741
- A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, Sub-Riemannian sphere in Martinet flat case, ESAIM Control Optim. Calc. Var. 2 (1997), 377-448 Zbl0902.53033MR1483765
- A. A. Agrachev, A “Gauss-Bonnet formula” for contact sub-Riemannian manifolds, Dokl. Akad. Nauk 381 (2001), 583-585 Zbl1044.53021MR1890409
- A. A. Agrachev, D. Barilari, U. Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes) Zbl1236.53030
- A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Two-Dimensional Almost-Riemannian Structures With Tangency Points, Proceedings of the 48th IEEE Conference on Decision and Control, December 16-18, 2009. Shangai, China. Zbl1192.53029MR2629880
- A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 793-807 Zbl1192.53029MR2629880
- Andrei Agrachev, Ugo Boscain, Mario Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst. 20 (2008), 801-822 Zbl1198.49041MR2379474
- Andrei Agrachev, Igor Zelenko, On feedback classification of control-affine systems with one- and two-dimensional inputs, SIAM J. Control Optim. 46 (2007), 1431-1460 (electronic) Zbl1140.93018MR2346387
- Andrei A. Agrachev, Yuri L. Sachkov, Control theory from the geometric viewpoint, 87 (2004), Springer-Verlag, Berlin Zbl1062.93001MR2062547
- André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry 144 (1996), 1-78, Birkhäuser, Basel Zbl0862.53031MR1421822
- B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1081-1098 Zbl1184.53036MR2542715
- Bernard Bonnard, Jean Baptiste Caillau, Singular Metrics on the Two-Sphere in Space Mechanics Zbl1127.49017
- Bernard Bonnard, Grégoire Charlot, Roberta Ghezzi, Gabriel Janin, The Sphere and the Cut Locus at a Tangency Point in Two-Dimensional Almost-Riemannian Geometry, J. Dynam. Control Systems 17 (2011), 141-161 Zbl1209.53014MR2765542
- Bernard Bonnard, Monique Chyba, Méthodes géométriques et analytiques pour étudier l’application exponentielle, la sphère et le front d’onde en géométrie sous-riemannienne dans le cas Martinet, ESAIM Control Optim. Calc. Var. 4 (1999), 245-334 (electronic) Zbl0929.53016MR1696290
- U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Lipschitz Classification of Almost-Riemannian Distances on Compact Oriented Surfaces, Journal of Geometric Analysis, 1-18 Zbl1259.53031
- Ugo Boscain, Thomas Chambrion, Grégoire Charlot, Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), 957-990 Zbl1084.81083MR2170218
- Ugo Boscain, G. Charlot, R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures Zbl1260.53063
- Ugo Boscain, Grégoire Charlot, Resonance of minimizers for -level quantum systems with an arbitrary cost, ESAIM Control Optim. Calc. Var. 10 (2004), 593-614 (electronic) Zbl1072.49002MR2111082
- Ugo Boscain, Grégoire Charlot, Jean-Paul Gauthier, Stéphane Guérin, Hans-Rudolf Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems, J. Math. Phys. 43 (2002), 2107-2132 Zbl1059.81195MR1893663
- Ugo Boscain, Camille Laurent, The Laplace–Beltrami operator in almost-Riemannian Geometry Zbl1314.58017
- Ugo Boscain, Mario Sigalotti, High-order angles in almost-Riemannian geometry, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 24. Année 2005–2006 25 (2008), 41-54, Univ. Grenoble I Zbl1159.53320MR2478807
- Bruno Franchi, Ermanno Lanconelli, Une métrique associée à une classe d’opérateurs elliptiques dégénérés, Rend. Sem. Mat. Univ. Politec. Torino (1983), 105-114 (1984) Zbl0553.35033MR745979
- V. V. Grušin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970), 456-473 MR279436
- Morris W. Hirsch, Differential topology, 33 (1994), Springer-Verlag, New York Zbl0356.57001MR1336822
- Frédéric Jean, Uniform estimation of sub-Riemannian balls, J. Dynam. Control Systems 7 (2001), 473-500 Zbl1029.53039MR1854033
- Ravindra Shripad Kulkarni, Curvature and metric, Ann. of Math. (2) 91 (1970), 311-331 Zbl0191.19903MR257932
- Fernand Pelletier, Quelques propriétés géométriques des variétés pseudo-riemanniennes singulières, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), 87-199 Zbl0845.53044MR1344719
- Fernand Pelletier, Liane Valère Bouche, The problem of geodesics, intrinsic derivation and the use of control theory in singular sub-Riemannian geometry, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) 1 (1996), 453-512, Soc. Math. France, Paris Zbl0877.53029MR1427768
- L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (1983), “Nauka”, Moscow Zbl0516.49001MR719372
- Marilena Vendittelli, Giuseppe Oriolo, Frédéric Jean, Jean-Paul Laumond, Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities, IEEE Trans. Automat. Control 49 (2004), 261-266 MR2034349
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.