On almost-Riemannian surfaces

Roberta Ghezzi[1]

  • [1] Department of Mathematical Sciences and Centre of Computational and Integrative Biology, Rutgers University Camden - Camden, 311 N 5th Street, Camden, NJ 08102, USA.

Séminaire de théorie spectrale et géométrie (2010-2011)

  • Volume: 29, page 15-49
  • ISSN: 1624-5458

Abstract

top
An almost-Riemannian structure on a surface is a generalized Riemannian structure whose local orthonormal frames are given by Lie bracket generating pairs of vector fields that can become collinear. The distribution generated locally by orthonormal frames has maximal rank at almost every point of the surface, but in general it has rank 1 on a nonempty set which is generically a smooth curve. In this paper we provide a short introduction to 2-dimensional almost-Riemannian geometry highlighting its novelties with respect to Riemannian geometry. We present some results that investigate topological, metric and geometric aspects of almost-Riemannian surfaces from a local and global point of view.

How to cite

top

Ghezzi, Roberta. "On almost-Riemannian surfaces." Séminaire de théorie spectrale et géométrie 29 (2010-2011): 15-49. <http://eudml.org/doc/219671>.

@article{Ghezzi2010-2011,
abstract = {An almost-Riemannian structure on a surface is a generalized Riemannian structure whose local orthonormal frames are given by Lie bracket generating pairs of vector fields that can become collinear. The distribution generated locally by orthonormal frames has maximal rank at almost every point of the surface, but in general it has rank 1 on a nonempty set which is generically a smooth curve. In this paper we provide a short introduction to 2-dimensional almost-Riemannian geometry highlighting its novelties with respect to Riemannian geometry. We present some results that investigate topological, metric and geometric aspects of almost-Riemannian surfaces from a local and global point of view.},
affiliation = {Department of Mathematical Sciences and Centre of Computational and Integrative Biology, Rutgers University Camden - Camden, 311 N 5th Street, Camden, NJ 08102, USA.},
author = {Ghezzi, Roberta},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {almost-Riemannian geometry; geodesics; Grushin plane; Lipschitz classification; Pontryagin maximum principle; Gauss-Bonnet formula},
language = {eng},
pages = {15-49},
publisher = {Institut Fourier},
title = {On almost-Riemannian surfaces},
url = {http://eudml.org/doc/219671},
volume = {29},
year = {2010-2011},
}

TY - JOUR
AU - Ghezzi, Roberta
TI - On almost-Riemannian surfaces
JO - Séminaire de théorie spectrale et géométrie
PY - 2010-2011
PB - Institut Fourier
VL - 29
SP - 15
EP - 49
AB - An almost-Riemannian structure on a surface is a generalized Riemannian structure whose local orthonormal frames are given by Lie bracket generating pairs of vector fields that can become collinear. The distribution generated locally by orthonormal frames has maximal rank at almost every point of the surface, but in general it has rank 1 on a nonempty set which is generically a smooth curve. In this paper we provide a short introduction to 2-dimensional almost-Riemannian geometry highlighting its novelties with respect to Riemannian geometry. We present some results that investigate topological, metric and geometric aspects of almost-Riemannian surfaces from a local and global point of view.
LA - eng
KW - almost-Riemannian geometry; geodesics; Grushin plane; Lipschitz classification; Pontryagin maximum principle; Gauss-Bonnet formula
UR - http://eudml.org/doc/219671
ER -

References

top
  1. A. Agrachev, Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Sem. Mat. Univ. Politec. Torino 56 (1998), 1-12 (2001) Zbl1039.53038MR1845741
  2. A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, Sub-Riemannian sphere in Martinet flat case, ESAIM Control Optim. Calc. Var. 2 (1997), 377-448 Zbl0902.53033MR1483765
  3. A. A. Agrachev, A “Gauss-Bonnet formula” for contact sub-Riemannian manifolds, Dokl. Akad. Nauk 381 (2001), 583-585 Zbl1044.53021MR1890409
  4. A. A. Agrachev, D. Barilari, U. Boscain, Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes) Zbl1236.53030
  5. A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Two-Dimensional Almost-Riemannian Structures With Tangency Points, Proceedings of the 48th IEEE Conference on Decision and Control, December 16-18, 2009. Shangai, China. Zbl1192.53029MR2629880
  6. A. A. Agrachev, U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Two-dimensional almost-Riemannian structures with tangency points, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 793-807 Zbl1192.53029MR2629880
  7. Andrei Agrachev, Ugo Boscain, Mario Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst. 20 (2008), 801-822 Zbl1198.49041MR2379474
  8. Andrei Agrachev, Igor Zelenko, On feedback classification of control-affine systems with one- and two-dimensional inputs, SIAM J. Control Optim. 46 (2007), 1431-1460 (electronic) Zbl1140.93018MR2346387
  9. Andrei A. Agrachev, Yuri L. Sachkov, Control theory from the geometric viewpoint, 87 (2004), Springer-Verlag, Berlin Zbl1062.93001MR2062547
  10. André Bellaïche, The tangent space in sub-Riemannian geometry, Sub-Riemannian geometry 144 (1996), 1-78, Birkhäuser, Basel Zbl0862.53031MR1421822
  11. B. Bonnard, J.-B. Caillau, R. Sinclair, M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1081-1098 Zbl1184.53036MR2542715
  12. Bernard Bonnard, Jean Baptiste Caillau, Singular Metrics on the Two-Sphere in Space Mechanics Zbl1127.49017
  13. Bernard Bonnard, Grégoire Charlot, Roberta Ghezzi, Gabriel Janin, The Sphere and the Cut Locus at a Tangency Point in Two-Dimensional Almost-Riemannian Geometry, J. Dynam. Control Systems 17 (2011), 141-161 Zbl1209.53014MR2765542
  14. Bernard Bonnard, Monique Chyba, Méthodes géométriques et analytiques pour étudier l’application exponentielle, la sphère et le front d’onde en géométrie sous-riemannienne dans le cas Martinet, ESAIM Control Optim. Calc. Var. 4 (1999), 245-334 (electronic) Zbl0929.53016MR1696290
  15. U. Boscain, G. Charlot, R. Ghezzi, M. Sigalotti, Lipschitz Classification of Almost-Riemannian Distances on Compact Oriented Surfaces, Journal of Geometric Analysis, 1-18 Zbl1259.53031
  16. Ugo Boscain, Thomas Chambrion, Grégoire Charlot, Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), 957-990 Zbl1084.81083MR2170218
  17. Ugo Boscain, G. Charlot, R. Ghezzi, Normal forms and invariants for 2-dimensional almost-Riemannian structures Zbl1260.53063
  18. Ugo Boscain, Grégoire Charlot, Resonance of minimizers for n -level quantum systems with an arbitrary cost, ESAIM Control Optim. Calc. Var. 10 (2004), 593-614 (electronic) Zbl1072.49002MR2111082
  19. Ugo Boscain, Grégoire Charlot, Jean-Paul Gauthier, Stéphane Guérin, Hans-Rudolf Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems, J. Math. Phys. 43 (2002), 2107-2132 Zbl1059.81195MR1893663
  20. Ugo Boscain, Camille Laurent, The Laplace–Beltrami operator in almost-Riemannian Geometry Zbl1314.58017
  21. Ugo Boscain, Mario Sigalotti, High-order angles in almost-Riemannian geometry, Actes de Séminaire de Théorie Spectrale et Géométrie. Vol. 24. Année 2005–2006 25 (2008), 41-54, Univ. Grenoble I Zbl1159.53320MR2478807
  22. Bruno Franchi, Ermanno Lanconelli, Une métrique associée à une classe d’opérateurs elliptiques dégénérés, Rend. Sem. Mat. Univ. Politec. Torino (1983), 105-114 (1984) Zbl0553.35033MR745979
  23. V. V. Grušin, A certain class of hypoelliptic operators, Mat. Sb. (N.S.) 83 (125) (1970), 456-473 MR279436
  24. Morris W. Hirsch, Differential topology, 33 (1994), Springer-Verlag, New York Zbl0356.57001MR1336822
  25. Frédéric Jean, Uniform estimation of sub-Riemannian balls, J. Dynam. Control Systems 7 (2001), 473-500 Zbl1029.53039MR1854033
  26. Ravindra Shripad Kulkarni, Curvature and metric, Ann. of Math. (2) 91 (1970), 311-331 Zbl0191.19903MR257932
  27. Fernand Pelletier, Quelques propriétés géométriques des variétés pseudo-riemanniennes singulières, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), 87-199 Zbl0845.53044MR1344719
  28. Fernand Pelletier, Liane Valère Bouche, The problem of geodesics, intrinsic derivation and the use of control theory in singular sub-Riemannian geometry, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992) 1 (1996), 453-512, Soc. Math. France, Paris Zbl0877.53029MR1427768
  29. L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (1983), “Nauka”, Moscow Zbl0516.49001MR719372
  30. Marilena Vendittelli, Giuseppe Oriolo, Frédéric Jean, Jean-Paul Laumond, Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities, IEEE Trans. Automat. Control 49 (2004), 261-266 MR2034349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.