Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet

Bernard Bonnard; Monique Chyba

ESAIM: Control, Optimisation and Calculus of Variations (1999)

  • Volume: 4, page 245-334
  • ISSN: 1292-8119

How to cite

top

Bonnard, Bernard, and Chyba, Monique. "Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 245-334. <http://eudml.org/doc/90542>.

@article{Bonnard1999,
author = {Bonnard, Bernard, Chyba, Monique},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {sub-Riemannian geometry; abnormal geodesics; sphere and wavefront of small radius; one parameter deformations},
language = {fre},
pages = {245-334},
publisher = {EDP Sciences},
title = {Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet},
url = {http://eudml.org/doc/90542},
volume = {4},
year = {1999},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Chyba, Monique
TI - Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 245
EP - 334
LA - fre
KW - sub-Riemannian geometry; abnormal geodesics; sphere and wavefront of small radius; one parameter deformations
UR - http://eudml.org/doc/90542
ER -

References

top
  1. [1] A. Agrachev, B. Bonnard, M. Chyba and I. KupkaSub-Riemannian sphere in Martinet flat case. ESAIM:COCV 2 ( 1997) 377-448. Zbl0902.53033MR1483765
  2. [2] A. Agrachev, C. El Alaoui and J.P. Gauthier, Sub-Riemannian metrics on R3. Geometric Control and Non-holonomic Problems in Mechanics, Conference Proceedings Series, Canad. Math. Soc. (to appear). Zbl0962.53022
  3. [3] A.A. Agrachev and R.V. Gamkrelidze, Exponentional representations of flows and chronological calculus. Math. USSR Sb. 35 ( 1979) 727-785. Zbl0429.34044
  4. [4] A.A. Agrachev and A.V. Sarychev, Strong minimality of abnormal geodesics for 2- distributions. J. Dynamical and Control Systems 1 ( 1995). 139-176. Zbl0951.53029MR1333769
  5. [5] A.A. Agrachev and A.V. Sarychev, Abnormal geodesics in SR-geometry subanalycity. Preprint ( 1997). MR1646285
  6. [6] A.A. Andronov, A.A. de Vitt and S.E. Khaikin, Theory of oscillations, Dover, New-York ( 1966). Zbl0188.56304
  7. [7] B. Bonnard, M. Chyba and I. Kupka, Non-integrable geodesics in SR-Martinet geometry, Proceedings AMS conference, Boulder ( 1997). Zbl0963.53015
  8. [8] B. Bonnard, M. Chyba and E. Trélat, Sub-Riemannian geometry: one parameter deformation of the Martinet flat case. J. Dynamical and Control Systems 4 ( 1998) 59-76. Zbl0980.53043MR1605346
  9. [9] B. Bonnard, G. Launey and E. Trélat, The transcendence we need to compute the Sphere and the Wave Front in Martinet SR-Geometry. to appear in Proc. of Steklov Institute. Zbl0988.35008
  10. [10] B. Bonnard and E. Trélat, The role of abnormal minimizers in SR-geometry. Preprint ( 1999). Zbl1017.53034MR1923686
  11. [11] M. Chyba, Le cas Martinet en géométrie sous-Riemannienne, Thèse de l'Université de Bourgogne ( 1997). 
  12. [12] H. Davis, Introduction to non linear differential and integral equations, Dover, New-York, ( 1962). Zbl0106.28904
  13. [13] J. Dieudonné, Calcul infinitésimal, Hermann, Paris ( 1980). Zbl0497.26004MR226971
  14. [14] L.V.D. Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Annals of Mathematics 140 ( 1994) 183-205. Zbl0837.12006MR1289495
  15. [15] J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris ( 1992). MR1399559
  16. [16] G.H. Halphen, Traité des fonctions elliptiques, Gauthier-Villars, Tomes I à IV, Paris ( 1886). 
  17. [17] S. Jacquet, Distance sous-riemannienne et sous analycité.Preprint ( 1997). 
  18. [18] A.G. Khovanskii, Fewnomials, Trans. Math. Monographs 88, ( 1991). Zbl0728.12002
  19. [19] I. Kupka, Abnormal extremals. Preprint ( 1992). 
  20. [20] I. Kupka, Géométrie sous-Riemannienne, Séminaire Bourbaki ( 1996). MR1472545
  21. [21] D.F. Lawden, Elliptic functions and applications, Springer-Verlag, New-York ( 1989). Zbl0689.33001MR1007595
  22. [22] E.B. Lee and L. Markus, Foundations of optimal control theory, John Wiley and Sons, New-York ( 1967). Zbl0159.13201MR220537
  23. [23] S. Lefschetz, Differential equations: geometry theory, Dover, New-York ( 1977). 
  24. [24] M.A. Liapounoff, Problème général de la stabilité du mouvement. Annals of Maths. Studies, Princeton University Press ( 1947). Zbl0031.18403MR21186
  25. [25] J.M. Lion and J.P. Rolin, Théorèmes de préparation pour les fonctions logarithmo-exponentielles. Annales de l'Institut Fourier 47 ( 1997) 859- 884. Zbl0873.32004MR1465789
  26. [26] W.S. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics of rank-2 distributions. Memoirs of the Americain Math. Society 118, ( 1995). Zbl0843.53038
  27. [27] S. Lojasiewicz and H.J. Sussmann, Some examples of reachable sets and optimal cost functions that fail to be subanalytic. SIAM J. Control Optim. 23 ( 1985) 584-598. Zbl0569.49029MR791889
  28. [28] A.E.H. Love, A treatise of the mathematical theory of elasticity, Dover ( 1944). Zbl0063.03651MR10851JFM47.0750.09
  29. [29] R. Montgomery, Abnormal minimizers, SIAM J. Control Optim. 32 ( 1994) 1605-1620. Zbl0816.49019MR1297101
  30. [30] A. Mourtada and R. Moussu, Applications de Dulac et applications pfaffiennes. Bulletin SMF 125 ( 1997) 1-13. Zbl0884.58004MR1459296
  31. [31] R. Moussu and A. Roche, Théorie de Khovanski et problème de Dulac. Inv. Math. 105 ( 1991) 431-441. Zbl0769.58050MR1115550
  32. [32] R. Roussarie, Bifurcations of planar vector fields and Hilbert's 16th problem, Birkhauser, Berlin ( 1998). Zbl0707.00011
  33. [33] J.J Stoker, Nonlinear elasticity, Gordon and Breach, London ( 1968). Zbl0187.45801MR413654
  34. [34] R.A. Struble, Nonlinear differential equations, Mac Graw Hill ( 1962). Zbl0124.04904
  35. [35] J. Tannery and J. Molk, Éléments de la théorie des fonctions elliptiques, Gauthier-Villars, Tomes I à IV, Paris ( 1896). Zbl27.0335.01JFM27.0335.01
  36. [36] E.T. Whittaker and G.N. Watson, A course of modem analysis, Cambridge U. Press, New York ( 1927). JFM53.0180.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.