Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
Bernard Bonnard; Monique Chyba
ESAIM: Control, Optimisation and Calculus of Variations (1999)
- Volume: 4, page 245-334
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBonnard, Bernard, and Chyba, Monique. "Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet." ESAIM: Control, Optimisation and Calculus of Variations 4 (1999): 245-334. <http://eudml.org/doc/90542>.
@article{Bonnard1999,
author = {Bonnard, Bernard, Chyba, Monique},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {sub-Riemannian geometry; abnormal geodesics; sphere and wavefront of small radius; one parameter deformations},
language = {fre},
pages = {245-334},
publisher = {EDP Sciences},
title = {Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet},
url = {http://eudml.org/doc/90542},
volume = {4},
year = {1999},
}
TY - JOUR
AU - Bonnard, Bernard
AU - Chyba, Monique
TI - Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1999
PB - EDP Sciences
VL - 4
SP - 245
EP - 334
LA - fre
KW - sub-Riemannian geometry; abnormal geodesics; sphere and wavefront of small radius; one parameter deformations
UR - http://eudml.org/doc/90542
ER -
References
top- [1] A. Agrachev, B. Bonnard, M. Chyba and I. KupkaSub-Riemannian sphere in Martinet flat case. ESAIM:COCV 2 ( 1997) 377-448. Zbl0902.53033MR1483765
- [2] A. Agrachev, C. El Alaoui and J.P. Gauthier, Sub-Riemannian metrics on R3. Geometric Control and Non-holonomic Problems in Mechanics, Conference Proceedings Series, Canad. Math. Soc. (to appear). Zbl0962.53022
- [3] A.A. Agrachev and R.V. Gamkrelidze, Exponentional representations of flows and chronological calculus. Math. USSR Sb. 35 ( 1979) 727-785. Zbl0429.34044
- [4] A.A. Agrachev and A.V. Sarychev, Strong minimality of abnormal geodesics for 2- distributions. J. Dynamical and Control Systems 1 ( 1995). 139-176. Zbl0951.53029MR1333769
- [5] A.A. Agrachev and A.V. Sarychev, Abnormal geodesics in SR-geometry subanalycity. Preprint ( 1997). MR1646285
- [6] A.A. Andronov, A.A. de Vitt and S.E. Khaikin, Theory of oscillations, Dover, New-York ( 1966). Zbl0188.56304
- [7] B. Bonnard, M. Chyba and I. Kupka, Non-integrable geodesics in SR-Martinet geometry, Proceedings AMS conference, Boulder ( 1997). Zbl0963.53015
- [8] B. Bonnard, M. Chyba and E. Trélat, Sub-Riemannian geometry: one parameter deformation of the Martinet flat case. J. Dynamical and Control Systems 4 ( 1998) 59-76. Zbl0980.53043MR1605346
- [9] B. Bonnard, G. Launey and E. Trélat, The transcendence we need to compute the Sphere and the Wave Front in Martinet SR-Geometry. to appear in Proc. of Steklov Institute. Zbl0988.35008
- [10] B. Bonnard and E. Trélat, The role of abnormal minimizers in SR-geometry. Preprint ( 1999). Zbl1017.53034MR1923686
- [11] M. Chyba, Le cas Martinet en géométrie sous-Riemannienne, Thèse de l'Université de Bourgogne ( 1997).
- [12] H. Davis, Introduction to non linear differential and integral equations, Dover, New-York, ( 1962). Zbl0106.28904
- [13] J. Dieudonné, Calcul infinitésimal, Hermann, Paris ( 1980). Zbl0497.26004MR226971
- [14] L.V.D. Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Annals of Mathematics 140 ( 1994) 183-205. Zbl0837.12006MR1289495
- [15] J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris ( 1992). MR1399559
- [16] G.H. Halphen, Traité des fonctions elliptiques, Gauthier-Villars, Tomes I à IV, Paris ( 1886).
- [17] S. Jacquet, Distance sous-riemannienne et sous analycité.Preprint ( 1997).
- [18] A.G. Khovanskii, Fewnomials, Trans. Math. Monographs 88, ( 1991). Zbl0728.12002
- [19] I. Kupka, Abnormal extremals. Preprint ( 1992).
- [20] I. Kupka, Géométrie sous-Riemannienne, Séminaire Bourbaki ( 1996). MR1472545
- [21] D.F. Lawden, Elliptic functions and applications, Springer-Verlag, New-York ( 1989). Zbl0689.33001MR1007595
- [22] E.B. Lee and L. Markus, Foundations of optimal control theory, John Wiley and Sons, New-York ( 1967). Zbl0159.13201MR220537
- [23] S. Lefschetz, Differential equations: geometry theory, Dover, New-York ( 1977).
- [24] M.A. Liapounoff, Problème général de la stabilité du mouvement. Annals of Maths. Studies, Princeton University Press ( 1947). Zbl0031.18403MR21186
- [25] J.M. Lion and J.P. Rolin, Théorèmes de préparation pour les fonctions logarithmo-exponentielles. Annales de l'Institut Fourier 47 ( 1997) 859- 884. Zbl0873.32004MR1465789
- [26] W.S. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics of rank-2 distributions. Memoirs of the Americain Math. Society 118, ( 1995). Zbl0843.53038
- [27] S. Lojasiewicz and H.J. Sussmann, Some examples of reachable sets and optimal cost functions that fail to be subanalytic. SIAM J. Control Optim. 23 ( 1985) 584-598. Zbl0569.49029MR791889
- [28] A.E.H. Love, A treatise of the mathematical theory of elasticity, Dover ( 1944). Zbl0063.03651MR10851JFM47.0750.09
- [29] R. Montgomery, Abnormal minimizers, SIAM J. Control Optim. 32 ( 1994) 1605-1620. Zbl0816.49019MR1297101
- [30] A. Mourtada and R. Moussu, Applications de Dulac et applications pfaffiennes. Bulletin SMF 125 ( 1997) 1-13. Zbl0884.58004MR1459296
- [31] R. Moussu and A. Roche, Théorie de Khovanski et problème de Dulac. Inv. Math. 105 ( 1991) 431-441. Zbl0769.58050MR1115550
- [32] R. Roussarie, Bifurcations of planar vector fields and Hilbert's 16th problem, Birkhauser, Berlin ( 1998). Zbl0707.00011
- [33] J.J Stoker, Nonlinear elasticity, Gordon and Breach, London ( 1968). Zbl0187.45801MR413654
- [34] R.A. Struble, Nonlinear differential equations, Mac Graw Hill ( 1962). Zbl0124.04904
- [35] J. Tannery and J. Molk, Éléments de la théorie des fonctions elliptiques, Gauthier-Villars, Tomes I à IV, Paris ( 1896). Zbl27.0335.01JFM27.0335.01
- [36] E.T. Whittaker and G.N. Watson, A course of modem analysis, Cambridge U. Press, New York ( 1927). JFM53.0180.04
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.