Conjugate and cut loci of a two-sphere of revolution with application to optimal control

Bernard Bonnard; Jean-Baptiste Caillau; Robert Sinclair; Minoru Tanaka

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1081-1098
  • ISSN: 0294-1449

How to cite

top

Bonnard, Bernard, et al. "Conjugate and cut loci of a two-sphere of revolution with application to optimal control." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1081-1098. <http://eudml.org/doc/78880>.

@article{Bonnard2009,
author = {Bonnard, Bernard, Caillau, Jean-Baptiste, Sinclair, Robert, Tanaka, Minoru},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {conjugate locus; cut locus; optimal control; space and quantum mechanics},
language = {eng},
number = {4},
pages = {1081-1098},
publisher = {Elsevier},
title = {Conjugate and cut loci of a two-sphere of revolution with application to optimal control},
url = {http://eudml.org/doc/78880},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Caillau, Jean-Baptiste
AU - Sinclair, Robert
AU - Tanaka, Minoru
TI - Conjugate and cut loci of a two-sphere of revolution with application to optimal control
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1081
EP - 1098
LA - eng
KW - conjugate locus; cut locus; optimal control; space and quantum mechanics
UR - http://eudml.org/doc/78880
ER -

References

top
  1. [1] A. Agrachev, U. Boscain, M. Sigalotti, A Gauss–Bonnet like formula on two-dimensional almost Riemannian manifolds, Preprint SISSA 55/2006/M, 2006. Zbl1198.49041MR2384632
  2. [2] Bao D., Robles C., Shen Z., Zermelo navigation on Riemannian manifolds, J. Differential Geom.66 (3) (2004) 377-435. Zbl1078.53073MR2106471
  3. [3] Berger M., A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003. Zbl1038.53002MR2002701
  4. [4] Bonnard B., Caillau J.-B., Optimality results in orbit transfer, C. R. Acad. Sci. Paris, Ser. I345 (2007) 319-324. Zbl1122.49018MR2359089
  5. [5] Bonnard B., Caillau J.-B., Dujol R., Energy minimization of single-input orbit transfer by averaging and continuation, Bull. Sci. Math.130 (8) (2006) 707-719. Zbl1136.93046MR2276200
  6. [6] Bonnard B., Caillau J.-B., Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust, Ann. Inst. H. Poincaré Anal. Non Linéaire24 (3) (2007) 395-411. Zbl1127.49017MR2319940
  7. [7] B. Bonnard, D. Sugny, Optimal control with applications in space and quantum dynamics, Preprint Institut math. Bourgogne, 2007. Zbl1266.49002
  8. [8] B. Bonnard, J.B. Caillau, M. Tanaka, One-parameter family of Clairaut–Liouville metrics with application to optimal control, HAL preprint No 00177686 (2007), url: hal.archives-ouvertes.fr/hal-00177686. 
  9. [9] Bonnard B., Chyba M., Singular Trajectories and Their Role in Control Theory, Springer-Verlag, Berlin, 2003. Zbl1022.93003MR1996448
  10. [10] Gluck H., Singer D., Scattering of geodesic fields I and II, Ann. of Math.108 (1978) 347-372, and 110 (1979) 205–225. Zbl0436.53047MR506991
  11. [11] Gravesen J., Markvorsen S., Sinclair R., Tanaka M., The cut locus of a torus of revolution, Asian J. Math.9 (2005) 103-120. Zbl1080.53005MR2150694
  12. [12] Hebda J.J., Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom.40 (1994) 621-642. Zbl0823.53031MR1305983
  13. [13] Itoh J.I., Kiyohara K., The cut loci and the conjugate loci on ellipsoids, Manuscripta Math.114 (2004) 247-264. Zbl1076.53042MR2067796
  14. [14] K. Fleischmann, Die geodätischen Linien auf Rotationsflächen, Liegnitz, Dissertation, Seyffarth, 1915. Persistent URL: http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN317487884. JFM45.1372.05
  15. [15] Myers S.B., Connections between Differential Geometry and Topology: I. Simply connected surfaces and II. Closed surfaces, Duke Math. J.1 (1935) 376-391, and 2 (1936) 95–102. Zbl0012.27502MR1545884JFM61.0834.03
  16. [16] Poincaré H., Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc.6 (1905) 237-274. Zbl36.0669.01MR1500710JFM36.0669.01
  17. [17] Sakai T., Riemannian Geometry, Transl. Math. Monogr., vol. 149, American Mathematical Society, Providence, RI, 1996. Zbl0886.53002MR1390760
  18. [18] Shiohama K., Tanaka M., Cut loci and distance spheres on Alexandrov surfaces, in: Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger, Collection Soc. Math. France, vol. 1, Séminaires & Congrès, 1996, pp. 531-560. Zbl0874.53032MR1427770
  19. [19] Shiohama K., Shioya T., Tanaka M., The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Mathematics, vol. 159, 2003. Zbl1086.53056MR2028047
  20. [20] Sinclair R., Tanaka M., A bound on the number of endpoints of the cut locus, LMS J. Comput. Math.9 (2006) 21-39. Zbl1111.53004MR2199583
  21. [21] Sinclair R., Tanaka M., The cut locus of a two-sphere of revolution and Toponogov's comparison theorem, Tohoku Math. J.59 (2) (2007) 379-399. Zbl1158.53033MR2365347
  22. [22] Sugny D., Kontz C., Jauslin H., Time-optimal control of a two-level dissipative quantum system, Phys. Rev. A76 (2007) 023419. 

Citations in EuDML Documents

top
  1. Bernard Bonnard, Jean-Baptiste Caillau, Gabriel Janin, Conjugate-cut loci and injectivity domains on two-spheres of revolution
  2. Bernard Bonnard, Olivier Cots, Jean-Baptiste Pomet, Nataliya Shcherbakova, Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion
  3. Bernard Bonnard, Nataliya Shcherbakova, Dominique Sugny, The smooth continuation method in optimal control with an application to quantum systems
  4. Ugo Boscain, Camille Laurent, The Laplace-Beltrami operator in almost-Riemannian Geometry
  5. Bernard Bonnard, Nataliya Shcherbakova, Dominique Sugny, The smooth continuation method in optimal control with an application to quantum systems
  6. Roberta Ghezzi, On almost-Riemannian surfaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.