On separately subharmonic functions (Lelong’s problem)

A. Sadullaev[1]

  • [1] Mathematics department, National University of Uzbekistan, Vu Gorodok, 700174 Tashkent, Uzbekistan

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: S2, page 183-187
  • ISSN: 0240-2963

Abstract

top
The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .

How to cite

top

Sadullaev, A.. "On separately subharmonic functions (Lelong’s problem)." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 183-187. <http://eudml.org/doc/219681>.

@article{Sadullaev2011,
abstract = {The main result of the present paper is : every separately-subharmonic function $u(x,y)$, which is harmonic in $y$, can be represented locally as a sum two functions, $u=u^\{*\} +U$, where $U$ is subharmonic and $u^\{*\}$ is harmonic in $y$ , subharmonic in $x$ and harmonic in $(x,y)$ outside of some nowhere dense set $S$.},
affiliation = {Mathematics department, National University of Uzbekistan, Vu Gorodok, 700174 Tashkent, Uzbekistan},
author = {Sadullaev, A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {harmonic function; subharmonic function; separately subharmonic function},
language = {eng},
month = {4},
number = {S2},
pages = {183-187},
publisher = {Université Paul Sabatier, Toulouse},
title = {On separately subharmonic functions (Lelong’s problem)},
url = {http://eudml.org/doc/219681},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Sadullaev, A.
TI - On separately subharmonic functions (Lelong’s problem)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 183
EP - 187
AB - The main result of the present paper is : every separately-subharmonic function $u(x,y)$, which is harmonic in $y$, can be represented locally as a sum two functions, $u=u^{*} +U$, where $U$ is subharmonic and $u^{*}$ is harmonic in $y$ , subharmonic in $x$ and harmonic in $(x,y)$ outside of some nowhere dense set $S$.
LA - eng
KW - harmonic function; subharmonic function; separately subharmonic function
UR - http://eudml.org/doc/219681
ER -

References

top
  1. Lelong (P.).— Les fonctions plurisousharmoniques, Ann. Sci. Ecol. Norm. Sup. 62, p. 301-328 (1945). Zbl0061.23205MR18304
  2. Lelong (P.).— Fonctions plurisousharmoniques et fonctions analytiques de variables réelles, Ann. Inst. Fourier 11, p. 515-562 (1961). Zbl0100.07902MR142789
  3. Wiegerinck (J.).— Separately subharmonic functions need not be subharmonic, Proc. Amer. Math. Soc.  104, p. 770-771 (1988). Zbl0697.31002MR964855
  4. Wiegerinck (J.) and Zeinstra (R.).— Separately subharmonic functions: when are they subharmonic, Proc.  Sympos.  Pure Math. 52:1, p. 245-249 (1991). Zbl0743.31005MR1128528
  5. Avanissian (V.).— Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Sci. École Norm. Sup. 78, p. 101-161 (1961). Zbl0096.06103MR132206
  6. Arsove (M.G.).— On subharmonicity of doubly subharmonic functions, Proc. Amer. Math. Soc. 17, p. 622-626 (1966). Zbl0151.16005MR197762
  7. Riihentaus (J.).— On a theorem of Avanissian-Arsove, Exposition. Math. 7, p. 69-72 (1989). Zbl0677.31004MR982156
  8. Riihentaus (J.).— Subharmonic functions, generalizations and separately subharmonic functions, arXiv:math / 0610259v5 (2008). MR2443221
  9. Armitage (D.M.) and Gardiner (S.J.).— Conditions for separately subharmonic functions to be subharmonic, Potential Anal. 2, p. 225-261 (1993). Zbl0788.31005MR1245243
  10. Cegrell (U.) and Sadullaev (A.).— Uzbek Math. J. 1, p. 78-83 (1993). 
  11. Imomkulov.— Separately subharmonic functions, S.A. Dokl. UzSSR. 21, p. 8-10 (1990). Zbl0708.31005MR1058070
  12. Kołodziej (S.) and Thorbiörnson (J.).— Separately harmonic and subharmonic functions, Potential Anal. 5, p. 463-466 (1996). Zbl0859.31005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.