On separately subharmonic functions (Lelong’s problem)
A. Sadullaev[1]
- [1] Mathematics department, National University of Uzbekistan, Vu Gorodok, 700174 Tashkent, Uzbekistan
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: S2, page 183-187
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSadullaev, A.. "On separately subharmonic functions (Lelong’s problem)." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 183-187. <http://eudml.org/doc/219681>.
@article{Sadullaev2011,
abstract = {The main result of the present paper is : every separately-subharmonic function $u(x,y)$, which is harmonic in $y$, can be represented locally as a sum two functions, $u=u^\{*\} +U$, where $U$ is subharmonic and $u^\{*\}$ is harmonic in $y$ , subharmonic in $x$ and harmonic in $(x,y)$ outside of some nowhere dense set $S$.},
affiliation = {Mathematics department, National University of Uzbekistan, Vu Gorodok, 700174 Tashkent, Uzbekistan},
author = {Sadullaev, A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {harmonic function; subharmonic function; separately subharmonic function},
language = {eng},
month = {4},
number = {S2},
pages = {183-187},
publisher = {Université Paul Sabatier, Toulouse},
title = {On separately subharmonic functions (Lelong’s problem)},
url = {http://eudml.org/doc/219681},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Sadullaev, A.
TI - On separately subharmonic functions (Lelong’s problem)
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 183
EP - 187
AB - The main result of the present paper is : every separately-subharmonic function $u(x,y)$, which is harmonic in $y$, can be represented locally as a sum two functions, $u=u^{*} +U$, where $U$ is subharmonic and $u^{*}$ is harmonic in $y$ , subharmonic in $x$ and harmonic in $(x,y)$ outside of some nowhere dense set $S$.
LA - eng
KW - harmonic function; subharmonic function; separately subharmonic function
UR - http://eudml.org/doc/219681
ER -
References
top- Lelong (P.).— Les fonctions plurisousharmoniques, Ann. Sci. Ecol. Norm. Sup. 62, p. 301-328 (1945). Zbl0061.23205MR18304
- Lelong (P.).— Fonctions plurisousharmoniques et fonctions analytiques de variables réelles, Ann. Inst. Fourier 11, p. 515-562 (1961). Zbl0100.07902MR142789
- Wiegerinck (J.).— Separately subharmonic functions need not be subharmonic, Proc. Amer. Math. Soc. 104, p. 770-771 (1988). Zbl0697.31002MR964855
- Wiegerinck (J.) and Zeinstra (R.).— Separately subharmonic functions: when are they subharmonic, Proc. Sympos. Pure Math. 52:1, p. 245-249 (1991). Zbl0743.31005MR1128528
- Avanissian (V.).— Fonctions plurisousharmoniques et fonctions doublement sousharmoniques, Ann. Sci. École Norm. Sup. 78, p. 101-161 (1961). Zbl0096.06103MR132206
- Arsove (M.G.).— On subharmonicity of doubly subharmonic functions, Proc. Amer. Math. Soc. 17, p. 622-626 (1966). Zbl0151.16005MR197762
- Riihentaus (J.).— On a theorem of Avanissian-Arsove, Exposition. Math. 7, p. 69-72 (1989). Zbl0677.31004MR982156
- Riihentaus (J.).— Subharmonic functions, generalizations and separately subharmonic functions, arXiv:math / 0610259v5 (2008). MR2443221
- Armitage (D.M.) and Gardiner (S.J.).— Conditions for separately subharmonic functions to be subharmonic, Potential Anal. 2, p. 225-261 (1993). Zbl0788.31005MR1245243
- Cegrell (U.) and Sadullaev (A.).— Uzbek Math. J. 1, p. 78-83 (1993).
- Imomkulov.— Separately subharmonic functions, S.A. Dokl. UzSSR. 21, p. 8-10 (1990). Zbl0708.31005MR1058070
- Kołodziej (S.) and Thorbiörnson (J.).— Separately harmonic and subharmonic functions, Potential Anal. 5, p. 463-466 (1996). Zbl0859.31005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.