Applications harmoniques stables dans P n

D. Burns; P. De Bartolomeis

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 2, page 159-177
  • ISSN: 0012-9593

How to cite


Burns, D., and De Bartolomeis, P.. "Applications harmoniques stables dans $P^n$." Annales scientifiques de l'École Normale Supérieure 21.2 (1988): 159-177. <>.

author = {Burns, D., De Bartolomeis, P.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Riemannian manifold; Riemannian surface; stable harmonic map},
language = {fre},
number = {2},
pages = {159-177},
publisher = {Elsevier},
title = {Applications harmoniques stables dans $P^n$},
url = {},
volume = {21},
year = {1988},

AU - Burns, D.
AU - De Bartolomeis, P.
TI - Applications harmoniques stables dans $P^n$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 2
SP - 159
EP - 177
LA - fre
KW - Riemannian manifold; Riemannian surface; stable harmonic map
UR -
ER -


  1. [AHS] M. F. ATIYAH, N. HITCHIN et I. M. SINGER, Self-duality in Four Dimensional Riemannian Geometry (Proc. Roy. Soc. Lond., A 362, 1978, p. 425-461). Zbl0389.53011MR80d:53023
  2. [B] C. BOYER, Conformal Duality and Compact Complex Surfaces (Math. Ann., 274, 1986, p. 517-526). Zbl0571.32017MR87i:53068
  3. [BdB 1] D. BURNS et P. DE BARTOLOMEIS, Stable Harmonic Maps Into Pn, à paraître aux comptes rendus du colloque "Applications Harmoniques", Marseille/Luminy, juin, 1986. 
  4. [BdB 2] D. BURNS et P. DE BARTOLOMEIS, Stable Vector Bundles and Extremal Metrics (à paraître). 
  5. [BBdBR] D. BURNS, F. BURSTALL, P. DE BARTOLOMEIS et J. RAWNSLEY, Stable Maps Into Köhler Manifolds (à paraître). 
  6. [BRS] F. BURSTALL, J. RAWNSLEY et S. SALOMON, Stable Harmonic 2-spheres in Symmetric Spaces (Bull. AMS, vol. 16, (2), 1987, p. 274-278). Zbl0617.58019MR88e:58024
  7. [BS] F. BURSTALL et S. SALOMON, Tournaments, Flags and Harmonic Maps (Math. Ann., vol. 280, 1987. Zbl0597.58005
  8. [BW] F. BURSTALL et J. WOOD, The Construction of Harmonic Maps Into Complex Grassmannians (J. Diff. Geom., vol. 23, 1986, p. 255-298). Zbl0588.58018MR88i:58038
  9. [C] E. CALABI, Métriques Köhlériennes et Fibrés Holomorphes (Ann. Sci. E.N.S., 4. sér., vol. 12, 1979, p. 269-294). Zbl0431.53056MR83m:32033
  10. [CW] S. S. CHERN et J. WOLFSON, Harmonic Maps of the Two-sphere Into a Complex Grassmann Manifold II (Ann. Math., vol. 125, 1987, p. 301-335). Zbl0627.58017MR88g:58038
  11. [D] A. DERDZINSKI, Self-dual Köhler Manifolds and Einstein Manifolds of Dimension Four (Comp. Math., vol. 49, 1983, p. 405-433). Zbl0527.53030MR84h:53060
  12. [H] N. HITCHIN, Köhlerian Twistor Spaces (Proc. Lond. Math. Soc., vol. 43, (3), 1981, p. 133-150). Zbl0474.14024MR84b:32014
  13. [K] J. KING, The Currents Defined by Analytic Varieties (Acta Math., vol. 127, 1972, p. 185-220). Zbl0224.32008MR52 #14359
  14. [L] H. B. LAWSON, Surfaces minimales et la construction de Calabi-Penrose (Sém. Boubaki, exp. 624, Astér., 1985, p. 121-122). Zbl0734.53044MR87a:58043
  15. [LS] H. B. LAWSON et J. SIMONS, On Stable Currents and Their Applications to Global Problems in Real and Complex Geometry (Ann. Math., vol. 98, 1974, p. 427-450). Zbl0283.53049MR48 #2881
  16. [LB] C. LE BRUN, On the Topology of Self-dual 4-manifolds (Proc. AMS, vol. 98, 1986, p. 367-640). Zbl0606.53029MR87k:53107
  17. [O] S. OHNITA, On Pluriharmonicity of Stable Harmonic Maps (J. London Math. Soc., (2), vol. 35, 1987, p. 563-568). Zbl0588.58019MR88j:58026
  18. [S] N. SIBONY, Quelques problèmes de prolongements en analyse complexe (Duke Math. J., vol. 52, 1985, p. 157-198). Zbl0578.32023MR87e:32020
  19. [Si1] Y. T. SIU, Analyticity of Sets Associated with Lelong Numbers and the Extension of Positive Closed Currents (Inv. Math., vol. 27, 1974, p. 53-156). Zbl0289.32003MR50 #5003
  20. [Si 2] Y. T. SIU, The Complex Analyticity of Harmonic Maps and the Strong Rigidity of Compact Köhler Manifolds (Ann. Math., vol. 112, 1980, p. 73-111). Zbl0517.53058MR81j:53061
  21. [Si 3] Y. T. SIU, Curvature Characterisation of Hyperquadrics (Duke Math. J., vol. 47, 1980, p. 641-654). Zbl0468.53054MR81k:53060
  22. [SY] Y. T. SIU et S.-T. YAU, Compact Köhler Manifolds of Positive Bisectional Curvature (Inv. Math., vol. 59, 1980, p. 189-204). Zbl0442.53056MR81h:58029
  23. [Sm] R. T. SMITH, The Second Variation of a Harmonic Map (Proc. AMS, vol. 47, 1975, p. 229-236). Zbl0303.58008
  24. [U] K. UHLENBECK, Harmonic Maps Into Lie Groups, preprint. Zbl0677.58020
  25. [V] J.-L. VERDIER, Applications stables de S2 dans S4, dans Geometry Today, Giornate di Geometria, Roma, 1984, p. 267-282, Birkhöuser, Basel/Boston, 1985. Zbl0581.58012
  26. [W] J. WOLFSON, Harmonic Sequences and Harmonic Maps to Complex Grassmann manifolds (à paraître). Zbl0642.58021

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.