Courants kählériens et surfaces compactes

Ahcène Lamari

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 1, page 263-285
  • ISSN: 0373-0956

Abstract

top
A compact complex surface is shown to be Kähler if and only if it carries a strictly positive d -closed current (in other words, a Kähler current), thanks to Demailly’s regularization theorem. We prove a Harvey-Lawson type characterization of compact manifolds carrying such a current. Using Hodge symmetry, we then give a unified proof of kählerianity for surfaces with even first Betti number.

How to cite

top

Lamari, Ahcène. "Courants kählériens et surfaces compactes." Annales de l'institut Fourier 49.1 (1999): 263-285. <http://eudml.org/doc/75335>.

@article{Lamari1999,
abstract = {Le théorème de régularisation de Demailly ramène l’existence d’une métrique kählérienne sur une surface compacte à celle d’un (1-1)-courant strictement positif $d$-fermé (“courant kählérien”). Après avoir démontré un critère d’existence d’un tel courant, nous utilisons la symétrie de Hodge pour donner une démonstration unifiée du caractère kählérien des surfaces compactes à premier nombre de Betti pair.},
author = {Lamari, Ahcène},
journal = {Annales de l'institut Fourier},
keywords = {strictly positive -closed currents; Kähler currents; regularization; Kähler surfaces; Kähler metrics; compact surfaces},
language = {fre},
number = {1},
pages = {263-285},
publisher = {Association des Annales de l'Institut Fourier},
title = {Courants kählériens et surfaces compactes},
url = {http://eudml.org/doc/75335},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Lamari, Ahcène
TI - Courants kählériens et surfaces compactes
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 263
EP - 285
AB - Le théorème de régularisation de Demailly ramène l’existence d’une métrique kählérienne sur une surface compacte à celle d’un (1-1)-courant strictement positif $d$-fermé (“courant kählérien”). Après avoir démontré un critère d’existence d’un tel courant, nous utilisons la symétrie de Hodge pour donner une démonstration unifiée du caractère kählérien des surfaces compactes à premier nombre de Betti pair.
LA - fre
KW - strictly positive -closed currents; Kähler currents; regularization; Kähler surfaces; Kähler metrics; compact surfaces
UR - http://eudml.org/doc/75335
ER -

References

top
  1. [BPV84] W. BARTH, C. PETERS et A. VAN DE VEN, Compact complex surfaces, Springer, Berlin, 1984. Zbl0718.14023MR86c:32026
  2. [Be85] A. BEAUVILLE, Toutes les surfaces K3 sont kählériennes, Astérisque 126, Paris (1985). Zbl0574.32040
  3. [CK52] W.-L. CHOW et K. KODAIRA, On analytic surfaces with two independent meromorphic functions, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 319-325. Zbl0046.30903MR14,37e
  4. [De92] J.-P. DEMAILLY, Regularization of closed positive currents and intersection theory, J. Alg. Geom., 1 (1992), 361-409. Zbl0777.32016MR93e:32015
  5. [De93] J.-P. DEMAILLY, Monge-Ampère operators, Lelong numbers and intersection theory, in Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and A. Silva, Plenum Press, New-York, 1993. Zbl0792.32006MR94k:32009
  6. [F83] A. FUJIKI, On compact complex manifolds in C without holomorphic 2-forms Publ. Res. Inst. Math. Sci. Kyoto, 19 (1983), 193-202. Zbl0522.32024MR84m:32037
  7. [Gau77] P. GAUDUCHON, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, série A, 285 (1977), 387-390. Zbl0362.53024MR57 #10664
  8. [Gau85] P. GAUDUCHON, Les métriques standard sur une surface à b1 pair, Astérisque 126, Paris (1985). 
  9. [H74] R. HARVEY, Removable singularities for positive currents, Amer. J. Math., 96 (1974), 67-78. Zbl0293.32015MR50 #13602
  10. [H77] R. HARVEY, Holomorphic chains and their boundaries Proc. Symp. Pure Math., 30, Part I, AMS, Providence, R.I. (1977), 309-382. Zbl0374.32002MR56 #5929
  11. [Hi75] H. HIRONAKA, Flattening theorem in complex analytic geometry, Amer. J. Math., 97 (1975), 503-547. Zbl0307.32011MR52 #14365
  12. [HL83] R. HARVEY et H.B. JR LAWSON, An intrinsic characterization of Kähler manifolds, Invent. Math., 74 (1983), 261-295. Zbl0553.32008
  13. [JS93] S. JI et B. SHIFFMAN, Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal., 3 (1993), 37-62. Zbl0784.32009MR93m:32014
  14. [Ji93] S. JI, Currents, metrics and Moishezon manifolds, Pacific Journal of Math., 158 (1993), 335-351. Zbl0785.32011MR94m:32044
  15. [K64] K. KODAIRA, On the structure of compact complex analytic surfaces (I), Amer. J. Math., 86 (1964), 751-798. Zbl0137.17501MR32 #4708
  16. [KM71] K. KODAIRA et J. MORROW, Complex manifolds, New York: Holt, Rinehart and Winston, 1971. Zbl0325.32001MR46 #2080
  17. [Le68] P. LELONG, Fonctions plurisousharmoniques et formes différentielles positives, Dunod, Paris, 1968. Zbl0195.11603MR39 #4436
  18. [M83] M.-L. MICHELSOHN, On the existence of special metrics in complex geometry, Acta Math., 143 (1983), 261-295. Zbl0531.53053
  19. [Miy74a] Y. MIYAOKA, Extension theorems for Kähler metrics, Proc. Japan Acad., 50 (1974), 407-410. Zbl0354.32010MR57 #3432
  20. [Miy74b] Y. MIYAOKA, Kähler metrics on elliptic surfaces, Proc. Japan Acad., 50 (1974), 533-536. Zbl0354.32011MR57 #723
  21. [Sh] B. SHIFFMAN, Extension of positive line bundles and meromorphic maps, Invent. Math., 15 (1972), 332-347. Zbl0223.32017MR51 #10689
  22. [Siu74] Y.-T. SIU, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. Zbl0289.32003MR50 #5003
  23. [Siu83] Y.-T. SIU, Every K3 surface is Kähler, Invent. Math., 73 (1983), 130-150. Zbl0557.32004MR84j:32036
  24. [Su76] D. SULLIVAN, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math., 36 (1976), 225-255. Zbl0335.57015MR55 #6440
  25. [V] J. VAROUCHAS, Propriétés cohomologiques d'une classe de variétés analytiques complexes compactes, Sem. d'Analyse Lelong-Dolbeault-Skoda 1983-1984, Lecture Notes in Math., Vol. 1198, Springer, Berlin, 1985, 245-259. Zbl0591.32032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.