Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions
- [1] Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, 34956 Tuzla/Istanbul, Turkey
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: S2, page 211-239
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topZakharyuta, Vyacheslav. "Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 211-239. <http://eudml.org/doc/219695>.
@article{Zakharyuta2011,
abstract = {Let $K$ be a compact set in an open set $D$ on a Stein manifold $\Omega $ of dimension $n$. We denote by $H^\{\infty \}\left( D\right) $ the Banach space of all bounded and analytic in $D$ functions endowed with the uniform norm and by $A_\{K\}^\{D\}$ a compact subset of the space $C\left( K\right) $ consisted of all restrictions of functions from the unit ball $\{\mathbb\{B\}\} _\{H^\{\infty \}\left( D\right) \}$. In 1950ies Kolmogorov posed a problem: does\[ \{\cal H\}\_\{\varepsilon \}\left( A\_\{K\}^\{D\}\right) \sim \tau \left( \ln \frac\{ 1\}\{\varepsilon \}\right) ^\{n+1\text\{ \}\},\;\varepsilon \rightarrow 0, \]where $\{\cal H\}_\{\varepsilon \}\left( A_\{K\}^\{D\}\right) $ is the $\varepsilon $-entropy of the compact $A_\{K\}^\{D\}$. We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters of the set $A_\{K\}^\{D\}$ wih respect to the unit ball in the space $C\left( K\right) $. We decribe a progress in studying of these problems, beginning with initial results of 1950ies, in the closed connection with the problem on existence of a common basis for the spaces $A\left( K\right) $ and $A\left( D\right) $ with good estimates on sublevel sets of extremal plurisubharmonic function for the pair (condenser) $\left( K,D\right) $. The survey is concluded by a discussion of some open problems.},
affiliation = {Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, 34956 Tuzla/Istanbul, Turkey},
author = {Zakharyuta, Vyacheslav},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {entropy and widths asymptotics; spaces of analytic functions; Kolmogorov problem},
language = {eng},
month = {4},
number = {S2},
pages = {211-239},
publisher = {Université Paul Sabatier, Toulouse},
title = {Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions},
url = {http://eudml.org/doc/219695},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Zakharyuta, Vyacheslav
TI - Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 211
EP - 239
AB - Let $K$ be a compact set in an open set $D$ on a Stein manifold $\Omega $ of dimension $n$. We denote by $H^{\infty }\left( D\right) $ the Banach space of all bounded and analytic in $D$ functions endowed with the uniform norm and by $A_{K}^{D}$ a compact subset of the space $C\left( K\right) $ consisted of all restrictions of functions from the unit ball ${\mathbb{B}} _{H^{\infty }\left( D\right) }$. In 1950ies Kolmogorov posed a problem: does\[ {\cal H}_{\varepsilon }\left( A_{K}^{D}\right) \sim \tau \left( \ln \frac{ 1}{\varepsilon }\right) ^{n+1\text{ }},\;\varepsilon \rightarrow 0, \]where ${\cal H}_{\varepsilon }\left( A_{K}^{D}\right) $ is the $\varepsilon $-entropy of the compact $A_{K}^{D}$. We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters of the set $A_{K}^{D}$ wih respect to the unit ball in the space $C\left( K\right) $. We decribe a progress in studying of these problems, beginning with initial results of 1950ies, in the closed connection with the problem on existence of a common basis for the spaces $A\left( K\right) $ and $A\left( D\right) $ with good estimates on sublevel sets of extremal plurisubharmonic function for the pair (condenser) $\left( K,D\right) $. The survey is concluded by a discussion of some open problems.
LA - eng
KW - entropy and widths asymptotics; spaces of analytic functions; Kolmogorov problem
UR - http://eudml.org/doc/219695
ER -
References
top- Aytuna (A.).— On Stein manifolds for which is isomorphic to as Fréchet spaces, Manuscripta Math. 62, p. 297-315 (1988). Zbl0662.32014MR966628
- Aytuna (A.).— Stein spaces for which is isomorphic to a power series space, in: Advances in Theory of Fréchet Spaces (ed. T. Terzioğlu), Kluwer, p. 115-154 (1989). Zbl0743.46017MR1083561
- Aytuna (A.), Rashkovskii (A.), Zakharyuta (V.).— Widths asymptotics for a pair of Reinhardt domains, Ann. Pol. Math. 78 , p. 31-38 (2002). Zbl1009.32002MR1899309
- Babenko (K. I.).— On entropy of a class of analytic functions, Nauch. Dokl. Vis. Shkoly 1 (2), p. 9-19 (1958).
- Bedford (E.), Taylor (A. B.).— The Dirichlet problem for a complex Monge-Ampére equation, Invent. Math. 37 , p. 1-44 (1976). Zbl0315.31007MR445006
- Bedford (E.), Taylor (A. B.).— A new capacity for plurisubharmonic functions, Acta Math. 149, p. 1-40 (1982). Zbl0547.32012MR674165
- Bergman (S.).— The Kernel Function and Conformal Mapping, Math. Surveys5, AMS, (1950). Zbl0040.19001MR38439
- Erokhin (V. D.).— On conformal transformations of rings and the fundamental basis in the space of functions analytic in an elementary neighborhood of an arbitrary continuum, Doklady AN SSSR 120, p. 689-692 (1958). Zbl0098.08603MR102743
- Erokhin (V. D.).— On asymptotics of -entropy of analytic functions, Doklady AN SSSR 120, p. 949-952 (1958). Zbl0098.08701MR102744
- Erokhin (V. D.).— On the best approximation of functions analytically extendible from a given continuum into a given domain, Uspehi Matem. Nauk 14, p. 91-132 (1968).
- Fisher (S. D.), Miccelli (C. A.).— The -widths of sets of analytic functions, Duke Math. J. 47, p. 789-801 (1980). Zbl0451.30032MR596114
- Gauthier (P. M.), Melnikov (M. S.).— Compact approximation by bounded functions and functions continuous up to the boundary, Linear and complex analysis, 61-66; Amer. Math. Soc. Transl. Ser. 2,226. Zbl1183.30032MR2500510
- Gurevich (W.), Wallman (H.).— Dimension Theory, Princeton University Press, 1941; Russian translation, IL, Moscow (1948). Zbl0036.12501MR6493
- Kerzman (N.), Rosay (I. P.).— Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut, Math. Ann. 257, p. 171-184 (1981). Zbl0451.32012MR634460
- Klimek.— Pluripotential Theory, Clarendon Press, Oxford-NY-Tokyo (1991). Zbl0742.31001MR1150978
- Kolmogorov (A. N.).— Estimates of the minimal number of elements of -nets in various functional spaces and their application to the problem on the representation of functions of several variables with superpositions of functions of lesser number of variables, Uspehi Matem. Nauk 10, p. 192-193 (1955).
- Kolmogorov (A. N.).— Asymptotic characteristics of certain totally bounded metric spaces, Doklady AN SSSR 108, p. 585-589 (1956). MR80904
- Kolmogorov (A. N.), Tikhomirov (V. M.).— -entropy and -capacity of sets in functional spaces, Uspehi Matem. Nauk 14, p. 3-86 (1959). Zbl0090.33503MR112032
- Krein (S. G.).— On an interpolation theorem in the operator theory, Doklady AN SSSR 130, p. 491-494 (1960). Zbl0089.32202MR119094
- Krein (S. G.), Petunin (Yu. I.), Semenov (E. M.).— Interpolation of linear operators, Nauka, Moscow, 1978 (in Russian). Zbl0499.46044MR506343
- Levin (A. L.), Tikhomirov (V. M.).— On theorem of Erokhin (V. D.), Russian Math. Surveys 23, p. 119-132 (1968).
- Leja (F.).— Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Soc. Pol. Math. 4, p. 8-13 (1957). Zbl0089.08303MR100726
- Lelong (P.).— Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach, C. R. Acad. Sci. Paris 305 Serie I, p. 71-76 (1987). Zbl0627.46054MR901138
- Levenberg (N.).— Monge-Ampère measures associated to extremal plurisubharmonic functions in , Trans. Amer. Math. Soc. 289, p. 333-343 (1985). Zbl0541.31009MR779067
- Lions (J. L.).— Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc, Math. Phys. R. P. Roumanie 2, p. 419-432 (1958). Zbl0097.09501MR151829
- Mityagin (B. S.).— Approximative dimension and bases in nuclear spaces, Russian Math. Survey 16, p. 59-127 (1963). Zbl0104.08601
- Markushevich (A. I.).— Theory of functions of complex variable, Vol. I,II,III, Translated and edited by R. A. Silverman, Chelsea Publishing Co., NY (1977). Zbl0357.30002MR444912
- Meise (R.), Vogt (D.).— Introduction to Functional Analysis, Clarendon Press, Oxford (1997). Zbl0924.46002MR1483073
- Nguyen (T. V.).— Bases de Schauder dans certain espaces de functions holomorphes, Ann. Inst. Fourier, 22, p. 169-253 (1972). Zbl0226.46025MR388058
- Nguyen (T. V.).— Note on doubly systems of Bergman, in: Linear Topological Spaces and Complex Analysis, Ankara, METU-TÜBİTAK (ed. Aytuna (A.)) 3, p. 137-159 (1997). MR1632495
- Nguyen (T. V.), Siciak (J.).— Fonctions plurisousharmoniques extrémales et systèmes doublement orthogonaux de fonctions analytiques, Bull. Sc. math., 115, p. 235-244 (1991). Zbl0810.32011MR1101026
- Nguyen (T. V.), Zeriahi (A.).— Familles de polynômes presque bornées, Bull. Sci. Math. 107, p. 81-91 (1983). Zbl0523.32011MR699992
- Nguyen (T. V.), Zeriahi (A.).— Systèmes doublement orthogonaux de fonctions holomorphes et applications, in: Topics in Complex Analysis, Banach Center Publications, Warszawa 31, p. 281-296 (1995). Zbl0844.31003MR1341397
- Nivoche (S.).— Sur une conjecture de Zahariuta et un probléme de Kolmogorov, C. R. Acad. Sci. Paris, Sér. I Math. 333, p. 839-843 (2001). Zbl1016.32016MR1873221
- Nivoche (S.).— Proof of the conjecture of Zahariuta concerning a problem of Kolmogorov on the -entropy, Invent. Math. 158, p. 413-450 (2004). Zbl1066.32031MR2096799
- Pietsch (A.).— Nuclear locally convex spaces, Berlin-Heidelberg-New York (1972). Zbl0236.46001MR350360
- Poletsky (E.).— Approximation of plurisubharmonic functions by multipole Green functions, Trans. Amer. Math. Soc. 335, p. 1579-1591 (2003). Zbl1023.32020MR1946406
- Sadullaev (A.).— Plurisubharmonic measures and capacity on complex manifolds, Uspehi Mat. Nauk. 36 No4, p. 53-105 (1981). Zbl0475.31006MR629683
- Semiguk (O. S.), Skiba (N. I.).— Common bases in some spaces of analytic functions om Riemann surfaces, Function Theory, Functional Analysis and Applications, Kharkov, 26, p. 90-95 (1976). Zbl0473.46016MR428021
- Sibony (N.).— Prolongement des fonctions holomorphes bornées et métrique de Caratheodory, Invent. Math. 29, p. 205-230 (1975). Zbl0333.32011MR385164
- Siciak (J.).— Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of , Ann. Pol. Math. 22, p. 145-171 (1969/1970). Zbl0185.15202MR252675
- Siciak (J.).— Extremal plurisubharmonic functions in , Ann. Pol. Math. 39, p. 175-211 (1981). Zbl0477.32018MR617459
- Skiba (N. I.).— Extendible bases and -diameters of sets in spaces of analytic functions on Riemann surfaces, Ph. D. Thesis, Rostov State University, Rostov-na-Donu (1979).
- Stehle (J. L.).— Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, Séminaire Lelong 73-74, Lecture Notes in Math., Springer 474, p. 155-180 (1975). Zbl0309.32011MR399524
- Ullman (J.).— Orthogonal polynomials for general measures, I, Proc. Tampa Conference on Rational Approximation and Interpolation (1983). Zbl0684.42014MR783300
- Vitushkin (A. G.).— On thirteenth problem of Hilbert, Doklady AN SSSR 117, p. 701-748 (1955).
- Vitushkin (A. G.).— Absolute entropy of metric spaces, Doklady AN SSSR 120, p. 745-748 (1957). Zbl0133.06702MR97280
- Vitushkin (A. G.).— The complexity estimation of tabulation problems, Fizmatgiz, Moscow (1959).
- Vogt (D.).— Eine Charakterisierung der Potenzreihenträume von endlichen Typ und ihre Folgerungen, Manuscripta Math. 37, p. 269-301 (1982). Zbl0512.46003MR657522
- Walsh (J. L.).— Interpolation and Approximation by Rational Functions in the Complex Domain, AMS Colloquium Publications 20 (1960). Zbl0106.28104MR218587
- Widom (H.).— Polynomials associated with measures in the complex plane, J. Math. Mech. 15, p. 997-1013 (1967). Zbl0182.09201MR209448
- Widom (H.).— Rational approximation and -dimensional diameter, JAT 5, p. 343-361 (1972). Zbl0234.30023MR367222
- Zahariuta (V.).— Continuable bases in spaces of analytic functions of one and several variables, Sibirsk. Mat. Zh., 19, p. 277-292 (1967). Zbl0182.45302MR215071
- Zakharyuta (V.).— On bases and isomorphism of spaces of functions analytic in convex domains, Teor. Funkciĭ, Funkcional. Anal. i Priložen., Kharkov 5 (1967), p. 5-12. Zbl0162.17702
- Zakharyuta (V.).— Isomorphism of spaces of holomorphic functions of several complex variables, Functional Analysis and Applications 5, p. 71-72 (1971). Zbl0241.46023MR477721
- Zakharyuta (V.).— Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I, II. Teor. Funkciĭ, Funkcional. Anal. i Priložen. 19, p. 133-157 (1974); ibid. 21, p. 65-83 (1974). Zbl0336.46032MR447632
- Zakharyuta (V.).— Some linear topological invariants and isomorphism of tensor products of scale centers, Izv. Sev.-Kavkaz. Nauch. Centra 4, p. 62-64 (1974).
- Zakharyuta (V.).— Isomorphism of spaces of analytic functions, Sov. Math. Dokl. 22, p. 631-634 (1980). Zbl0467.32009MR593188
- Zakharyuta (V.).— Spaces of analytic functions and maximal plurisubharmonic functions, Dr. Sci. Thesis, Rostov State University,Rostov-na-Donu, 1984, 281pp.
- Zakharyuta (V.).— Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis 1, p. 74-146 (1994). Zbl0859.30041MR1323360
- Zakharyuta (V.).— Kolmogorov problem on widths asymptotics and pluripotential theory, Contemporary Mathematics, 481, p. 171-196 (2009). Zbl1177.41026MR2497873
- Zakharyuta (V.).— On asymptotics of entropy of some class of analytic functions, preprint Zbl1218.28010
- Zakharyuta (V. P.), Kadampatta (S. N.).— On existence of extendible bases in spaces of functions analytic on compacta, Mat. Zametki 27, p. 701-713 (1980). Zbl0458.46006MR578255
- Zakharyuta (V.), Skiba (N.).— Estimates of -diameters of some classes of functions analytic on Riemann surfaces, Matem. zametki 19, p. 899-911 (1976). Zbl0375.46028MR419783
- Zeriahi (A.).— Capacité, constante de Ĉebyŝev et polynômes orthogonaux associés à un compact de , Bull. Sci. Math. (2) 109, p. 325-335 (1985). Zbl0583.31006MR822830
- Zeriahi (A.).— Bases de Schauder et isomorphismes d’espaces de fonctions holomorphes, C. R. Acad. Sci. Paris 310, p. 691-694 (1990). Zbl0721.32002MR1055229
- Zeriahi (A.).— Fonction de Green pluricomplexe à pôle à l’infini sur un espace de Stein parabolique et applications, Math. Sc. 69, p. 89-126 (1991). Zbl0748.31006MR1143476
- Zeriahi (A.).— Pluricomplex Green functions and approximation of holomorphic functions, Pitman Res. Notes, Math. Ser. 347, p. 104-102 (1996). Zbl0872.32010MR1402025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.