Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions

Vyacheslav Zakharyuta[1]

  • [1] Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, 34956 Tuzla/Istanbul, Turkey

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: S2, page 211-239
  • ISSN: 0240-2963

Abstract

top
Let K be a compact set in an open set D on a Stein manifold Ω of dimension n . We denote by H D the Banach space of all bounded and analytic in D functions endowed with the uniform norm and by A K D a compact subset of the space C K consisted of all restrictions of functions from the unit ball 𝔹 H D . In 1950ies Kolmogorov posed a problem: does ε A K D τ ln 1 ε n + 1 , ε 0 , where ε A K D is the ε -entropy of the compact A K D . We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters of the set A K D wih respect to the unit ball in the space C K . We decribe a progress in studying of these problems, beginning with initial results of 1950ies, in the closed connection with the problem on existence of a common basis for the spaces A K and A D with good estimates on sublevel sets of extremal plurisubharmonic function for the pair (condenser) K , D . The survey is concluded by a discussion of some open problems.

How to cite

top

Zakharyuta, Vyacheslav. "Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 211-239. <http://eudml.org/doc/219695>.

@article{Zakharyuta2011,
abstract = {Let $K$ be a compact set in an open set $D$ on a Stein manifold $\Omega $ of dimension $n$. We denote by $H^\{\infty \}\left( D\right) $ the Banach space of all bounded and analytic in $D$ functions endowed with the uniform norm and by $A_\{K\}^\{D\}$ a compact subset of the space $C\left( K\right) $ consisted of all restrictions of functions from the unit ball $\{\mathbb\{B\}\} _\{H^\{\infty \}\left( D\right) \}$. In 1950ies Kolmogorov posed a problem: does\[ \{\cal H\}\_\{\varepsilon \}\left( A\_\{K\}^\{D\}\right) \sim \tau \left( \ln \frac\{ 1\}\{\varepsilon \}\right) ^\{n+1\text\{ \}\},\;\varepsilon \rightarrow 0, \]where $\{\cal H\}_\{\varepsilon \}\left( A_\{K\}^\{D\}\right) $ is the $\varepsilon $-entropy of the compact $A_\{K\}^\{D\}$. We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters of the set $A_\{K\}^\{D\}$ wih respect to the unit ball in the space $C\left( K\right) $. We decribe a progress in studying of these problems, beginning with initial results of 1950ies, in the closed connection with the problem on existence of a common basis for the spaces $A\left( K\right) $ and $A\left( D\right) $ with good estimates on sublevel sets of extremal plurisubharmonic function for the pair (condenser) $\left( K,D\right) $. The survey is concluded by a discussion of some open problems.},
affiliation = {Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, 34956 Tuzla/Istanbul, Turkey},
author = {Zakharyuta, Vyacheslav},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {entropy and widths asymptotics; spaces of analytic functions; Kolmogorov problem},
language = {eng},
month = {4},
number = {S2},
pages = {211-239},
publisher = {Université Paul Sabatier, Toulouse},
title = {Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions},
url = {http://eudml.org/doc/219695},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Zakharyuta, Vyacheslav
TI - Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 211
EP - 239
AB - Let $K$ be a compact set in an open set $D$ on a Stein manifold $\Omega $ of dimension $n$. We denote by $H^{\infty }\left( D\right) $ the Banach space of all bounded and analytic in $D$ functions endowed with the uniform norm and by $A_{K}^{D}$ a compact subset of the space $C\left( K\right) $ consisted of all restrictions of functions from the unit ball ${\mathbb{B}} _{H^{\infty }\left( D\right) }$. In 1950ies Kolmogorov posed a problem: does\[ {\cal H}_{\varepsilon }\left( A_{K}^{D}\right) \sim \tau \left( \ln \frac{ 1}{\varepsilon }\right) ^{n+1\text{ }},\;\varepsilon \rightarrow 0, \]where ${\cal H}_{\varepsilon }\left( A_{K}^{D}\right) $ is the $\varepsilon $-entropy of the compact $A_{K}^{D}$. We give here a survey of results concerned with this problem and a related problem on the strict asymptotics of Kolmogorov diameters of the set $A_{K}^{D}$ wih respect to the unit ball in the space $C\left( K\right) $. We decribe a progress in studying of these problems, beginning with initial results of 1950ies, in the closed connection with the problem on existence of a common basis for the spaces $A\left( K\right) $ and $A\left( D\right) $ with good estimates on sublevel sets of extremal plurisubharmonic function for the pair (condenser) $\left( K,D\right) $. The survey is concluded by a discussion of some open problems.
LA - eng
KW - entropy and widths asymptotics; spaces of analytic functions; Kolmogorov problem
UR - http://eudml.org/doc/219695
ER -

References

top
  1. Aytuna (A.).— On Stein manifolds M for which 𝒪 M is isomorphic to 𝒪 Δ n as Fréchet spaces, Manuscripta Math. 62, p. 297-315 (1988). Zbl0662.32014MR966628
  2. Aytuna (A.).— Stein spaces M for which 𝒪 M is isomorphic to a power series space, in: Advances in Theory of Fréchet Spaces (ed. T. Terzioğlu), Kluwer, p. 115-154 (1989). Zbl0743.46017MR1083561
  3. Aytuna (A.), Rashkovskii (A.), Zakharyuta (V.).— Widths asymptotics for a pair of Reinhardt domains, Ann. Pol. Math. 78 , p. 31-38 (2002). Zbl1009.32002MR1899309
  4. Babenko (K. I.).— On entropy of a class of analytic functions, Nauch. Dokl. Vis. Shkoly 1 (2), p. 9-19 (1958). 
  5. Bedford (E.), Taylor (A. B.).— The Dirichlet problem for a complex Monge-Ampére equation, Invent. Math. 37 , p. 1-44 (1976). Zbl0315.31007MR445006
  6. Bedford (E.), Taylor (A. B.).— A new capacity for plurisubharmonic functions, Acta Math. 149, p. 1-40 (1982). Zbl0547.32012MR674165
  7. Bergman (S.).— The Kernel Function and Conformal Mapping, Math. Surveys5, AMS, (1950). Zbl0040.19001MR38439
  8. Erokhin (V. D.).— On conformal transformations of rings and the fundamental basis in the space of functions analytic in an elementary neighborhood of an arbitrary continuum, Doklady AN SSSR 120, p. 689-692 (1958). Zbl0098.08603MR102743
  9. Erokhin (V. D.).— On asymptotics of ε -entropy of analytic functions, Doklady AN SSSR 120, p. 949-952 (1958). Zbl0098.08701MR102744
  10. Erokhin (V. D.).— On the best approximation of functions analytically extendible from a given continuum into a given domain, Uspehi Matem. Nauk 14, p. 91-132 (1968). 
  11. Fisher (S. D.), Miccelli (C. A.).— The n -widths of sets of analytic functions, Duke Math. J. 47, p. 789-801 (1980). Zbl0451.30032MR596114
  12. Gauthier (P. M.), Melnikov (M. S.).— Compact approximation by bounded functions and functions continuous up to the boundary, Linear and complex analysis, 61-66; Amer. Math. Soc. Transl. Ser. 2,226. Zbl1183.30032MR2500510
  13. Gurevich (W.), Wallman (H.).— Dimension Theory, Princeton University Press, 1941; Russian translation, IL, Moscow (1948). Zbl0036.12501MR6493
  14. Kerzman (N.), Rosay (I. P.).— Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut, Math. Ann. 257, p. 171-184 (1981). Zbl0451.32012MR634460
  15. Klimek.— Pluripotential Theory, Clarendon Press, Oxford-NY-Tokyo (1991). Zbl0742.31001MR1150978
  16. Kolmogorov (A. N.).— Estimates of the minimal number of elements of ε -nets in various functional spaces and their application to the problem on the representation of functions of several variables with superpositions of functions of lesser number of variables, Uspehi Matem. Nauk 10, p. 192-193 (1955). 
  17. Kolmogorov (A. N.).— Asymptotic characteristics of certain totally bounded metric spaces, Doklady AN SSSR 108, p. 585-589 (1956). MR80904
  18. Kolmogorov (A. N.), Tikhomirov (V. M.).— ε -entropy and ε -capacity of sets in functional spaces, Uspehi Matem. Nauk 14, p. 3-86 (1959). Zbl0090.33503MR112032
  19. Krein (S. G.).— On an interpolation theorem in the operator theory, Doklady AN SSSR 130, p. 491-494 (1960). Zbl0089.32202MR119094
  20. Krein (S. G.), Petunin (Yu. I.), Semenov (E. M.).— Interpolation of linear operators, Nauka, Moscow, 1978 (in Russian). Zbl0499.46044MR506343
  21. Levin (A. L.), Tikhomirov (V. M.).— On theorem of Erokhin (V. D.), Russian Math. Surveys 23, p. 119-132 (1968). 
  22. Leja (F.).— Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Soc. Pol. Math. 4, p. 8-13 (1957). Zbl0089.08303MR100726
  23. Lelong (P.).— Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach, C. R. Acad. Sci. Paris 305 Serie I, p. 71-76 (1987). Zbl0627.46054MR901138
  24. Levenberg (N.).— Monge-Ampère measures associated to extremal plurisubharmonic functions in n , Trans. Amer. Math. Soc. 289, p. 333-343 (1985). Zbl0541.31009MR779067
  25. Lions (J. L.).— Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc, Math. Phys. R. P. Roumanie 2, p. 419-432 (1958). Zbl0097.09501MR151829
  26. Mityagin (B. S.).— Approximative dimension and bases in nuclear spaces, Russian Math. Survey 16, p. 59-127 (1963). Zbl0104.08601
  27. Markushevich (A. I.).— Theory of functions of complex variable, Vol. I,II,III, Translated and edited by R. A. Silverman, Chelsea Publishing Co., NY (1977). Zbl0357.30002MR444912
  28. Meise (R.), Vogt (D.).— Introduction to Functional Analysis, Clarendon Press, Oxford (1997). Zbl0924.46002MR1483073
  29. Nguyen (T. V.).— Bases de Schauder dans certain espaces de functions holomorphes, Ann. Inst. Fourier, 22, p. 169-253 (1972). Zbl0226.46025MR388058
  30. Nguyen (T. V.).— Note on doubly systems of Bergman, in: Linear Topological Spaces and Complex Analysis, Ankara, METU-TÜBİTAK (ed. Aytuna (A.)) 3, p. 137-159 (1997). MR1632495
  31. Nguyen (T. V.), Siciak (J.).— Fonctions plurisousharmoniques extrémales et systèmes doublement orthogonaux de fonctions analytiques, Bull. Sc. math., 115, p. 235-244 (1991). Zbl0810.32011MR1101026
  32. Nguyen (T. V.), Zeriahi (A.).— Familles de polynômes presque bornées, Bull. Sci. Math. 107, p. 81-91 (1983). Zbl0523.32011MR699992
  33. Nguyen (T. V.), Zeriahi (A.).— Systèmes doublement orthogonaux de fonctions holomorphes et applications, in: Topics in Complex Analysis, Banach Center Publications, Warszawa 31, p. 281-296 (1995). Zbl0844.31003MR1341397
  34. Nivoche (S.).— Sur une conjecture de Zahariuta et un probléme de Kolmogorov, C. R. Acad. Sci. Paris, Sér. I Math. 333, p. 839-843 (2001). Zbl1016.32016MR1873221
  35. Nivoche (S.).— Proof of the conjecture of Zahariuta concerning a problem of Kolmogorov on the ε -entropy, Invent. Math. 158, p. 413-450 (2004). Zbl1066.32031MR2096799
  36. Pietsch (A.).— Nuclear locally convex spaces, Berlin-Heidelberg-New York (1972). Zbl0236.46001MR350360
  37. Poletsky (E.).— Approximation of plurisubharmonic functions by multipole Green functions, Trans. Amer. Math. Soc. 335, p. 1579-1591 (2003). Zbl1023.32020MR1946406
  38. Sadullaev (A.).— Plurisubharmonic measures and capacity on complex manifolds, Uspehi Mat. Nauk. 36 No4, p. 53-105 (1981). Zbl0475.31006MR629683
  39. Semiguk (O. S.), Skiba (N. I.).— Common bases in some spaces of analytic functions om Riemann surfaces, Function Theory, Functional Analysis and Applications, Kharkov, 26, p. 90-95 (1976). Zbl0473.46016MR428021
  40. Sibony (N.).— Prolongement des fonctions holomorphes bornées et métrique de Caratheodory, Invent. Math. 29, p. 205-230 (1975). Zbl0333.32011MR385164
  41. Siciak (J.).— Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of n , Ann. Pol. Math. 22, p. 145-171 (1969/1970). Zbl0185.15202MR252675
  42. Siciak (J.).— Extremal plurisubharmonic functions in C n , Ann. Pol. Math. 39, p. 175-211 (1981). Zbl0477.32018MR617459
  43. Skiba (N. I.).— Extendible bases and n -diameters of sets in spaces of analytic functions on Riemann surfaces, Ph. D. Thesis, Rostov State University, Rostov-na-Donu (1979). 
  44. Stehle (J. L.).— Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, Séminaire Lelong 73-74, Lecture Notes in Math., Springer 474, p. 155-180 (1975). Zbl0309.32011MR399524
  45. Ullman (J.).— Orthogonal polynomials for general measures, I, Proc. Tampa Conference on Rational Approximation and Interpolation (1983). Zbl0684.42014MR783300
  46. Vitushkin (A. G.).— On thirteenth problem of Hilbert, Doklady AN SSSR 117, p. 701-748 (1955). 
  47. Vitushkin (A. G.).— Absolute entropy of metric spaces, Doklady AN SSSR 120, p. 745-748 (1957). Zbl0133.06702MR97280
  48. Vitushkin (A. G.).— The complexity estimation of tabulation problems, Fizmatgiz, Moscow (1959). 
  49. Vogt (D.).— Eine Charakterisierung der Potenzreihenträume von endlichen Typ und ihre Folgerungen, Manuscripta Math. 37, p. 269-301 (1982). Zbl0512.46003MR657522
  50. Walsh (J. L.).— Interpolation and Approximation by Rational Functions in the Complex Domain, AMS Colloquium Publications 20 (1960). Zbl0106.28104MR218587
  51. Widom (H.).— Polynomials associated with measures in the complex plane, J. Math. Mech. 15, p. 997-1013 (1967). Zbl0182.09201MR209448
  52. Widom (H.).— Rational approximation and n -dimensional diameter, JAT 5, p. 343-361 (1972). Zbl0234.30023MR367222
  53. Zahariuta (V.).— Continuable bases in spaces of analytic functions of one and several variables, Sibirsk. Mat. Zh., 19, p. 277-292 (1967). Zbl0182.45302MR215071
  54. Zakharyuta (V.).— On bases and isomorphism of spaces of functions analytic in convex domains, Teor. Funkciĭ, Funkcional. Anal. i Priložen., Kharkov 5 (1967), p. 5-12. Zbl0162.17702
  55. Zakharyuta (V.).— Isomorphism of spaces of holomorphic functions of several complex variables, Functional Analysis and Applications 5, p. 71-72 (1971). Zbl0241.46023MR477721
  56. Zakharyuta (V.).— Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables, I, II. Teor. Funkciĭ, Funkcional. Anal. i Priložen. 19, p. 133-157 (1974); ibid. 21, p. 65-83 (1974). Zbl0336.46032MR447632
  57. Zakharyuta (V.).— Some linear topological invariants and isomorphism of tensor products of scale centers, Izv. Sev.-Kavkaz. Nauch. Centra 4, p. 62-64 (1974). 
  58. Zakharyuta (V.).— Isomorphism of spaces of analytic functions, Sov. Math. Dokl. 22, p. 631-634 (1980). Zbl0467.32009MR593188
  59. Zakharyuta (V.).— Spaces of analytic functions and maximal plurisubharmonic functions, Dr. Sci. Thesis, Rostov State University,Rostov-na-Donu, 1984, 281pp. 
  60. Zakharyuta (V.).— Spaces of analytic functions and complex potential theory, in: Linear Topological Spaces and Complex Analysis 1, p. 74-146 (1994). Zbl0859.30041MR1323360
  61. Zakharyuta (V.).— Kolmogorov problem on widths asymptotics and pluripotential theory, Contemporary Mathematics, 481, p. 171-196 (2009). Zbl1177.41026MR2497873
  62. Zakharyuta (V.).— On asymptotics of entropy of some class of analytic functions, preprint Zbl1218.28010
  63. Zakharyuta (V. P.), Kadampatta (S. N.).— On existence of extendible bases in spaces of functions analytic on compacta, Mat. Zametki 27, p. 701-713 (1980). Zbl0458.46006MR578255
  64. Zakharyuta (V.), Skiba (N.).— Estimates of n -diameters of some classes of functions analytic on Riemann surfaces, Matem. zametki 19, p. 899-911 (1976). Zbl0375.46028MR419783
  65. Zeriahi (A.).— Capacité, constante de Ĉebyŝev et polynômes orthogonaux associés à un compact de n , Bull. Sci. Math. (2) 109, p. 325-335 (1985). Zbl0583.31006MR822830
  66. Zeriahi (A.).— Bases de Schauder et isomorphismes d’espaces de fonctions holomorphes, C. R. Acad. Sci. Paris 310, p. 691-694 (1990). Zbl0721.32002MR1055229
  67. Zeriahi (A.).— Fonction de Green pluricomplexe à pôle à l’infini sur un espace de Stein parabolique et applications, Math. Sc. 69, p. 89-126 (1991). Zbl0748.31006MR1143476
  68. Zeriahi (A.).— Pluricomplex Green functions and approximation of holomorphic functions, Pitman Res. Notes, Math. Ser. 347, p. 104-102 (1996). Zbl0872.32010MR1402025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.