Decomposition of the Grothendieck group of stable categories of finite groups.
The main results of this paper may be loosely stated as follows.Theorem.— Let and be sums of Galois algebras with group over algebraic number fields. Suppose that and have the same dimension and that they are identical at their wildly ramified primes. Then (writing for the maximal order in )In many cases The role played by the root numbers of and at the symplectic characters of in determining the relationship between the -modules and is described. The theorem includes...
For groups that satisfy the Isomorphism Conjecture in lower K-theory, we show that the cokernel of the forget-control K₀-groups is composed by the NK₀-groups of the finite subgroups. Using this information, we can calculate the exponent of each element in the cokernel in terms of the torsion of the group.
On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.
On introduit une opérade anticyclique définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari en construisant un isomorphisme entre et le groupe de Grothendieck de la catégorie qui envoie la base de sur les classes des modules projectifs et qui transforme la structure anticyclique de en la transformation de Coxeter de la catégorie dérivée de . La dualité...