ASD moduli spaces over four-manifolds with tree-like ends.
We describe alternate methods of solution for a model arising in the work of Seiberg and Witten on N = 2 supersymmetric Yang-Mills theory and provide a complete argument for the characterization put forth by Argyres, Faraggi, and Shapere of the curve .
Let a compact connected oriented 4-manifold. We study the space of -structures of fixed fundamental class, as an infinite dimensional principal bundle on the manifold of riemannian metrics on . In order to study perturbations of the metric in Seiberg-Witten equations, we study the transversality of universal equations, parametrized with all -structures . We prove that, on a complex Kähler surface, for an hermitian metric sufficiently close to the original Kähler metric, the moduli space...