Quadratic forms and singularities of genus one or two
- [1] Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue F. Joliot-Curie 13453 Marseille Cedex 13, France.
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 1, page 15-69
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topDloussky, Georges. "Quadratic forms and singularities of genus one or two." Annales de la faculté des sciences de Toulouse Mathématiques 20.1 (2011): 15-69. <http://eudml.org/doc/219761>.
@article{Dloussky2011,
abstract = {We study singularities obtained by the contraction of the maximal divisor in compact (non-kählerian) surfaces which contain global spherical shells. These singularities are of genus 1 or 2, may be $\mathbb\{Q\}$-Gorenstein, numerically Gorenstein or Gorenstein. A family of polynomials depending on the configuration of the curves computes the discriminants of the quadratic forms of these singularities. We introduce a multiplicative branch topological invariant which determines the twisting coefficient of a non-vanishing holomorphic 1-form on the complement of the singular point.},
affiliation = {Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue F. Joliot-Curie 13453 Marseille Cedex 13, France.},
author = {Dloussky, Georges},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {minimal compact complex surfaces in class ; global spherical shells; singularities; -Gorenstein; numerically Gorenstein; twisting coefficient},
language = {eng},
month = {1},
number = {1},
pages = {15-69},
publisher = {Université Paul Sabatier, Toulouse},
title = {Quadratic forms and singularities of genus one or two},
url = {http://eudml.org/doc/219761},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Dloussky, Georges
TI - Quadratic forms and singularities of genus one or two
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/1//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 1
SP - 15
EP - 69
AB - We study singularities obtained by the contraction of the maximal divisor in compact (non-kählerian) surfaces which contain global spherical shells. These singularities are of genus 1 or 2, may be $\mathbb{Q}$-Gorenstein, numerically Gorenstein or Gorenstein. A family of polynomials depending on the configuration of the curves computes the discriminants of the quadratic forms of these singularities. We introduce a multiplicative branch topological invariant which determines the twisting coefficient of a non-vanishing holomorphic 1-form on the complement of the singular point.
LA - eng
KW - minimal compact complex surfaces in class ; global spherical shells; singularities; -Gorenstein; numerically Gorenstein; twisting coefficient
UR - http://eudml.org/doc/219761
ER -
References
top- Barth (W.), Hulek (K.), Peters (C.), and Van de Ven (A.).— Compact Complex Surfaces, Springer, Heidelberg, Second Edition (2004). Zbl1036.14016MR2030225
- Demailly (J.P.).— Complex Analytic and Differential Geometry (1997). http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
- Dloussky (G.).— Structure des surfaces de Kato. Mémoire de la S.M.F 112. (1984). Zbl0543.32012MR763959
- Dloussky (G.).— Sur la classification des germes d’applications holomorphes contractantes. Math. Ann. 280, p. 649-661 (1988). Zbl0677.32004MR939924
- Dloussky (G.).— Une construction élémentaire des surfaces d’Inoue-Hirzebruch. Math. Ann. 280, p. 663-682 (1988). Zbl0617.14025MR939925
- Dloussky (G.).— On surfaces of class VII with numerically anticanonical divisor, Am. J. Math. 128(3), p. 639-670 (2006). Zbl1102.32007MR2230920
- Dloussky (G.), Oeljeklaus (K.).— Vector fields and foliations on compact surfaces of class VII. Ann. Inst. Fourier 49, p. 1503-1545 (1999). Zbl0978.32021MR1723825
- Dloussky (G.), Oeljeklaus (K.).— Surfaces de la classe VII et automorphismes de Hénon. C.R.A.S. 328, série I, p. 609-612 (1999). Zbl0945.32005MR1679974
- Dloussky (G.), Oeljeklaus (K.), Toma (M.).— Class VII surfaces with curves.Tohoku Math. J. 55, p. 283-309 (2003). Zbl1034.32012MR1979500
- Enoki (I.).— Surfaces of class VII with curves. Tôhoku Math. J. 33, p. 453-492 (1981). Zbl0476.14013MR643229
- Favre (Ch.).— Classification of -dimensional contracting rigid germs, Jour. Math. Pures Appl. 79, p. 475-514 (2000). Zbl0983.32023MR1759437
- Favre (Ch.).— Dynamique des applications rationnelles. Thèse pour le grade de Docteur en Sciences. Université de Paris XI Orsay (2000). http://tel.archives-ouvertes.fr/tel-00003577/fr/
- Hirzebruch (F.).— Hilbert modular surfaces. L’enseignement Math. 19, p. 183-281 (1973). Zbl0285.14007MR393045
- Inoue (M.).— New surfaces with no meromorphic functions II. Complex Analysis and Alg. Geom. p. 91-106. Iwanami Shoten Pb. (1977). Zbl0365.14011MR442297
- Karras (U.).— Deformations of cusps singularities. Proc. of Symp. in pure Math. 30, p. 37-44, AMS, Providence (1977). Zbl0352.14007MR472811
- Kato (Ma.).— Compact complex manifolds containing “global spherical shells” I Proc. of the Int. Symp. Alg. Geometry, Kyoto (1977) Iwanami Shoten Publ. Zbl0421.32010MR440076
- Kodaira (K.).— On the structure of compact complex analytic surfaces I, II. Am. J. of Math. vol.86, p. 751-798 (1964); vol.88, p. 682-721 (1966). Zbl0137.17501MR187255
- Laufer (H.).— On minimally elliptic singularities. Amer. J. of Math. 99, p. 1257-1295, (1977). Zbl0384.32003MR568898
- Looijenga (E.) & Wahl (J.).— Quadratic functions and smoothing surface singularities. Topology 25, p. 261-291 (1986). Zbl0615.32014MR842425
- Mérindol (J.Y.).— Surfaces normales dont le faisceau dualisant est trivial. C.R.A.S. 293, p. 417-420 (1981). Zbl0482.14012MR641100
- Nakamura (I.).— On surfaces of class with curves. Proc. Japan Academy 58A, p. 380-383 (1982) Zbl0519.32017MR694939
- Nakamura (I.).— On surfaces of class with curves. Invent. Math. 78, p. 393-443 (1984). Zbl0575.14033MR768987
- Nakamura (I.).— On surfaces of class with Global Spherical Shells. Proc. of the Japan Acad. 59, Ser. A, No 2, p. 29-32 (1983). Zbl0536.14022MR696743
- Nakamura (I.).— On the equations . Advanced Studies in pure Math. 8, Complex An. Singularities, p. 281-313 (1986). Zbl0643.14003MR894299
- Nakamura (I.).— Inoue-Hirzebruch surfaces and a duality of hyperbolic unimodular singularities I. Math. Ann. 252, p. 221-235 (1980). Zbl0425.14010MR593635
- Oeljeklaus (K.), Toma (M.).— Logarithmic moduli spaces for surfaces of class VII, Math. Ann. 341, p. 323-345 (2008). Zbl1144.32004MR2385660
- Pinkham (H.).— Singularités rationnelles de surfaces. Appendice. Séminaire sur les singularités des surfaces. Lecture Notes 777. Springer-Verlag (1980). Zbl0459.14009MR579026
- Ribenboim (R.).— Polynomials whose values are powers. J. für die reine und ang. Math. 268/269, p. 34-40 (1974). Zbl0299.12103MR364202
- Riemenschneider (O.).— Familien komplexer Räume mit streng pseudokonvexer spezieller Faser. Comment. Math. Helvetici 39(51) p. 547-565 (1976). Zbl0338.32013MR437808
- Sakai (F.).— Enriques classification of normal Gorenstein surfaces. Am. J. of Math. 104, p. 1233-1241 (1981). Zbl0512.14022MR681736
- Serre (J.P.).— Cours d’arithmétique Presses Universitaires de France (1970). Zbl0376.12001MR255476
- Teleman (A.).— Projectively flat surfaces and Bogomolov’s theorem on class – surfaces, Int. J. Math., Vol.5, No 2, p. 253-264, (1994). Zbl0803.53038MR1266285
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.