An introduction to the abelian Reidemeister torsion of three-dimensional manifolds

Gwénaël Massuyeau[1]

  • [1] IRMA Université de Strasbourg & CNRS 7 rue René Descartes 67084 Strasbourg France

Annales mathématiques Blaise Pascal (2011)

  • Volume: 18, Issue: 1, page 61-140
  • ISSN: 1259-1734

Abstract

top
These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for 3 -manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.

How to cite

top

Massuyeau, Gwénaël. "An introduction to the abelian Reidemeister torsion of three-dimensional manifolds." Annales mathématiques Blaise Pascal 18.1 (2011): 61-140. <http://eudml.org/doc/219767>.

@article{Massuyeau2011,
abstract = {These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for $3$-manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.},
affiliation = {IRMA Université de Strasbourg & CNRS 7 rue René Descartes 67084 Strasbourg France},
author = {Massuyeau, Gwénaël},
journal = {Annales mathématiques Blaise Pascal},
keywords = {$3$-manifold; Reidemeister torsion; Alexander polynomial; 3-manifold},
language = {eng},
month = {1},
number = {1},
pages = {61-140},
publisher = {Annales mathématiques Blaise Pascal},
title = {An introduction to the abelian Reidemeister torsion of three-dimensional manifolds},
url = {http://eudml.org/doc/219767},
volume = {18},
year = {2011},
}

TY - JOUR
AU - Massuyeau, Gwénaël
TI - An introduction to the abelian Reidemeister torsion of three-dimensional manifolds
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 61
EP - 140
AB - These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for $3$-manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.
LA - eng
KW - $3$-manifold; Reidemeister torsion; Alexander polynomial; 3-manifold
UR - http://eudml.org/doc/219767
ER -

References

top
  1. James W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306 Zbl54.0603.03MR1501429
  2. Reinhold Baer, Kurventypen auf Flächen., J. f. M. 156 (1927), 231-246 
  3. Reinhold Baer, Isotopie von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusamenhang mit der topologischen Deformation der Flächen., J. f. M. 159 (1928), 101-116 Zbl54.0602.05
  4. Joan S. Birman, Braids, links, and mapping class groups, (1974), Princeton University Press, Princeton, N.J. Zbl0305.57013MR375281
  5. Joan S. Birman, Xiao-Song Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993), 225-270 Zbl0812.57011MR1198809
  6. Richard C. Blanchfield, Applications of free differential calculus to the theory of groups, Senior thesis, Princeton University (1949) 
  7. Richard C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. (2) 65 (1957), 340-356 Zbl0080.16601MR85512
  8. Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), 305-314 Zbl0526.57009MR710104
  9. Glen E. Bredon, Topology and geometry, 139 (1993), Springer-Verlag, New York Zbl0934.55001MR1224675
  10. Thomas A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math. 96 (1974), 488-497 Zbl0358.57004MR391109
  11. Tim D. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347-398 Zbl1063.57011MR2077670
  12. Tim D. Cochran, Amir Gerges, Kent Orr, Dehn surgery equivalence relations on 3-manifolds, Math. Proc. Cambridge Philos. Soc. 131 (2001), 97-127 Zbl0984.57010MR1833077
  13. Marshall M. Cohen, A course in simple-homotopy theory, (1973), Springer-Verlag, New York Zbl0261.57009MR362320
  14. Florian Deloup, Gwénaël Massuyeau, Reidemeister-Turaev torsion modulo one of rational homology three-spheres, Geom. Topol. 7 (2003), 773-787 (electronic) Zbl1067.57007MR2026547
  15. Florian Deloup, Gwénaël Massuyeau, Quadratic functions and complex spin structures on three-manifolds, Topology 44 (2005), 509-555 Zbl1071.57009MR2122215
  16. Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547-560 Zbl0050.25602MR53938
  17. Ralph H. Fox, Free differential calculus. V. The Alexander matrices re-examined, Ann. of Math. (2) 71 (1960), 408-422 Zbl0142.22305MR111781
  18. Wolfgang Franz, Über die Torsion einer Überdeckung., J. Reine Angew. Math. 173 (1935), 245-254 Zbl0012.12702
  19. Wolfgang Franz, Torsionsideale, Torsionsklassen und Torsion., J. Reine Angew. Math. 176 (1936), 113-124 Zbl0015.37504
  20. Stefan Friedl, Reidemeister torsion, the Thurston norm and Harvey’s invariants, Pacific J. Math. 230 (2007), 271-296 Zbl1163.57008MR2309160
  21. Stefan Friedl, Taehee Kim, The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology 45 (2006), 929-953 Zbl1105.57009MR2263219
  22. Stefan Friedl, Stefano Vidussi, A survey of twisted Alexander polynomials, Preprint (2009) Zbl1170.57019MR2503517
  23. Charles Frohman, Joel Hass, Unstable minimal surfaces and Heegaard splittings, Invent. Math. 95 (1989), 529-540 Zbl0678.57009MR979363
  24. Shelly L. Harvey, Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology 44 (2005), 895-945 Zbl1080.57019MR2153977
  25. Jonathan Hillman, Algebraic invariants of links, 32 (2002), World Scientific Publishing Co. Inc., River Edge, NJ Zbl1007.57001MR1932169
  26. Michael Hutchings, Yi-Jen Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999), 369-396 (electronic) Zbl0929.57019MR1716272
  27. William Jaco, Lectures on three-manifold topology, 43 (1980), American Mathematical Society, Providence, R.I. Zbl0433.57001MR565450
  28. Akio Kawauchi, Sadayoshi Kojima, Algebraic classification of linking pairings on 3 -manifolds, Math. Ann. 253 (1980), 29-42 Zbl0427.57001MR594531
  29. Peter B. Kronheimer, Tomasz S. Mrowka, Scalar curvature and the Thurston norm, Math. Res. Lett. 4 (1997), 931-937 Zbl0892.57011MR1492131
  30. Jean Lannes, François Latour, Signature modulo 8 des variétés de dimension 4 k dont le bord est stablement parallélisé, C. R. Acad. Sci. Paris Sér. A 279 (1974), 705-707 Zbl0303.57011MR440575
  31. Thang T. Le, Finite-type Invariants of 3 -manifolds, Encyclopedia of Mathematical Physics (2006), 348-356 
  32. William B. R. Lickorish, A representation of orientable combinatorial 3 -manifolds, Ann. of Math. (2) 76 (1962), 531-540 Zbl0106.37102MR151948
  33. Eduard Looijenga, Jonathan Wahl, Quadratic functions and smoothing surface singularities, Topology 25 (1986), 261-291 Zbl0615.32014MR842425
  34. Gwénaël Massuyeau, Some finiteness properties for the Reidemeister-Turaev torsion of three-manifolds, J. Knot Theory Ramifications 19 (2010), 405-447 Zbl1229.57025MR2646639
  35. Sergei V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987), 268-278, 345 Zbl0634.57006MR915115
  36. Curtis T. McMullen, The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), 153-171 Zbl1009.57021MR1914929
  37. Guowu Meng, Clifford H. Taubes, SW ̲ = Milnor torsion, Math. Res. Lett. 3 (1996), 661-674 Zbl0870.57018MR1418579
  38. John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137-147 Zbl0108.36502MR141115
  39. John Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
  40. John Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) (1968), 115-133, Prindle, Weber & Schmidt, Boston, Mass. Zbl0179.52302MR242163
  41. Edwin E. Moise, Affine structures in 3 -manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96-114 Zbl0048.17102MR48805
  42. John W. Morgan, Dennis P. Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math. (2) 99 (1974), 463-544 Zbl0295.57008MR350748
  43. James Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521-554 Zbl0108.18101MR121804
  44. Hitoshi Murakami, A weight system derived from the multivariable Conway potential function, J. London Math. Soc. (2) 59 (1999), 698-714 Zbl0922.57008MR1709675
  45. Liviu I. Nicolaescu, The Reidemeister torsion of 3-manifolds, 30 (2003), Walter de Gruyter & Co., Berlin Zbl1024.57002MR1968575
  46. Liviu I. Nicolaescu, Seiberg-Witten invariants of rational homology 3-spheres, Commun. Contemp. Math. 6 (2004), 833-866 Zbl1082.57010MR2111431
  47. Tomotada Ohtsuki, Finite type invariants of integral homology 3 -spheres, J. Knot Theory Ramifications 5 (1996), 101-115 Zbl0942.57009MR1373813
  48. Peter Ozsváth, Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311-334 (electronic) Zbl1056.57020MR2023281
  49. Peter Ozsváth, Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159-1245 Zbl1081.57013MR2113020
  50. Peter Ozsváth, Zoltán Szabó, Link Floer homology and the Thurston norm, J. Amer. Math. Soc. 21 (2008), 671-709 Zbl1235.53090MR2393424
  51. Joan Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997) MR1396960
  52. Mikhail M. Postnikov, The structure of the ring of intersections of three-dimensional manifolds, Doklady Akad. Nauk. SSSR (N.S.) 61 (1948), 795-797 Zbl0034.25702MR27513
  53. Kurt Reidemeister, Homotopieringe und Linsenräume., Abh. Math. Semin. Hamb. Univ. 11 (1935), 102-109 Zbl0011.32404
  54. George de Rham, Serge Maumary, Michel A. Kervaire, Torsion et type simple d’homotopie, (1967), Springer-Verlag, Berlin Zbl0153.53901MR222893
  55. Dale Rolfsen, Knots and links, (1976), Publish or Perish Inc., Berkeley, Calif. Zbl0854.57002MR515288
  56. Colin P. Rourke, Brian J. Sanderson, Introduction to piecewise-linear topology, (1972), Springer-Verlag, New York Zbl1045.00006MR665919
  57. Hans-Georg Schumann, Über Moduln und Gruppenbilder, Math. Ann. 114 (1937), 385-413 Zbl0016.29403MR1513146
  58. Herbert Seifert, William Threlfall, Seifert and Threlfall: a textbook of topology, 89 (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York MR575168
  59. Norman Steenrod, The Topology of Fibre Bundles, (1951), Princeton University Press, Princeton, N. J. Zbl0054.07103MR39258
  60. Dennis Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), 275-277 Zbl0312.57003MR383415
  61. Masaaki Suzuki, The Magnus representation of the Torelli group g , 1 is not faithful for g 2 , Proc. Amer. Math. Soc. 130 (2002), 909-914 (electronic) Zbl0993.57006MR1866048
  62. Masaaki Suzuki, On the kernel of the Magnus representation of the Torelli group, Proc. Amer. Math. Soc. 133 (2005), 1865-1872 (electronic) Zbl1069.57010MR2120289
  63. Gadde A. Swarup, On a theorem of C. B. Thomas, J. London Math. Soc. (2) 8 (1974), 13-21 Zbl0281.57003MR341474
  64. Charles B. Thomas, The oriented homotopy type of compact 3 -manifolds, Proc. London Math. Soc. (3) 19 (1969), 31-44 Zbl0167.21502MR248838
  65. William P. Thurston, A norm for the homology of 3 -manifolds, Mem. Amer. Math. Soc. 59 (1986), i-vi and 99–130 Zbl0585.57006MR823443
  66. William P. Thurston, Three-dimensional geometry and topology. Vol. 1, 35 (1997), Princeton University Press, Princeton, NJ Zbl0873.57001MR1435975
  67. Lorenzo Traldi, Milnor’s invariants and the completions of link modules, Trans. Amer. Math. Soc. 284 (1984), 401-424 Zbl0525.57004MR742432
  68. Lorenzo Traldi, Conway’s potential function and its Taylor series, Kobe J. Math. 5 (1988), 233-263 Zbl0732.57007MR990824
  69. Vladimir Turaev, The Alexander polynomial of a three-dimensional manifold, Mat. Sb. (N.S.) 97(139) (1975), 341-359, 463 Zbl0315.57001MR383425
  70. Vladimir Turaev, Reidemeister torsion and the Alexander polynomial, Mat. Sb. (N.S.) 18(66) (1976), 252-270 Zbl0364.57004MR433462
  71. Vladimir Turaev, Cohomology rings, linking coefficient forms and invariants of spin structures in three-dimensional manifolds, Mat. Sb. (N.S.) 120(162) (1983), 68-83, 143 Zbl0519.57009MR687337
  72. Vladimir Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986), 97-147, 240 Zbl0602.57005MR832411
  73. Vladimir Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 607-643, 672 Zbl0692.57015MR1013714
  74. Vladimir Turaev, Torsion invariants of Spin c -structures on 3 -manifolds, Math. Res. Lett. 4 (1997), 679-695 Zbl0891.57019MR1484699
  75. Vladimir Turaev, A combinatorial formulation for the Seiberg-Witten invariants of 3 -manifolds, Math. Res. Lett. 5 (1998), 583-598 Zbl1002.57036MR1666856
  76. Vladimir Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561
  77. Vladimir Turaev, A homological estimate for the Thurston norm, Preprint (2002) Zbl1014.57002MR1885218
  78. Vladimir Turaev, Torsions of 3 -dimensional manifolds, 208 (2002), Birkhäuser Verlag, Basel Zbl1012.57002MR1958479
  79. Charles T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298 Zbl0215.39903MR156890
  80. Andrew H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528 Zbl0108.36101MR125588
  81. J. H. C. Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math. (2) 73 (1961), 154-212 Zbl0096.37802MR124917

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.