Braids in Pau – An Introduction

Enrique Artal Bartolo[1]; Vincent Florens[2]

  • [1] Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza, c/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain
  • [2] Laboratoire de Mathématiques et de leurs Applications - PAU UMR CNRS 5142 Bâtiment IPRA - Université de Pau et des Pays de l’Adour Avenue de l’Université - BP 1155 64013 PAU CEDEX, France

Annales mathématiques Blaise Pascal (2011)

  • Volume: 18, Issue: 1, page 1-14
  • ISSN: 1259-1734

Abstract

top
In this work, we describe the historic links between the study of 3 -dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.

How to cite

top

Artal Bartolo, Enrique, and Florens, Vincent. "Braids in Pau – An Introduction." Annales mathématiques Blaise Pascal 18.1 (2011): 1-14. <http://eudml.org/doc/219757>.

@article{ArtalBartolo2011,
abstract = {In this work, we describe the historic links between the study of $3$-dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.},
affiliation = {Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza, c/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Laboratoire de Mathématiques et de leurs Applications - PAU UMR CNRS 5142 Bâtiment IPRA - Université de Pau et des Pays de l’Adour Avenue de l’Université - BP 1155 64013 PAU CEDEX, France},
author = {Artal Bartolo, Enrique, Florens, Vincent},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Knots; curves; braid groups; torsion; Alexander polynomial; knots},
language = {eng},
month = {1},
number = {1},
pages = {1-14},
publisher = {Annales mathématiques Blaise Pascal},
title = {Braids in Pau – An Introduction},
url = {http://eudml.org/doc/219757},
volume = {18},
year = {2011},
}

TY - JOUR
AU - Artal Bartolo, Enrique
AU - Florens, Vincent
TI - Braids in Pau – An Introduction
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 1
EP - 14
AB - In this work, we describe the historic links between the study of $3$-dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.
LA - eng
KW - Knots; curves; braid groups; torsion; Alexander polynomial; knots
UR - http://eudml.org/doc/219757
ER -

References

top
  1. J. W. Alexander, A lemma on a system of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923), 93-95 
  2. J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306 Zbl54.0603.03MR1501429
  3. E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72 
  4. J. Carmona, Monodromía de trenzas de curvas algebraicas planas, (2003) 
  5. Fabrizio Catanese, Bronislaw Wajnryb, The 3-cuspidal quartic and braid monodromy of degree 4 coverings, Projective varieties with unexpected properties (2005), 113-129, Walter de Gruyter GmbH & Co. KG, Berlin Zbl1110.14037MR2202250
  6. A. Cayley, A theorem on groups, Math. Ann. 13 (1878), 561-565 Zbl10.0105.01MR1509978
  7. O. Chisini, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. 66 (1933), 1141-1155 Zbl0008.22001
  8. J. I. Cogolludo, Braid monodromy of algebraic curve, Ann. Math. Blaise Pascal 18 (2011), 141-209 Zbl1254.32043
  9. J. I. Cogolludo Agustín, V. Florens, Twisted Alexander polynomials of plane algebraic curves, J. Lond. Math. Soc. (2) 76 (2007), 105-121 Zbl1151.14022MR2351611
  10. A. I. Degtyarev, A divisibility theorem for the Alexander polynomial of a plane algebraic curve, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), 146-156, 300 Zbl1075.14025MR1879260
  11. M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), 137-168 Zbl41.0543.01MR1511580
  12. M. Dehn, Die beiden Kleeblattschlingen, Math. Ann. 75 (1914), 402-413 MR1511799
  13. Walther Dyck, Gruppentheoretische Studien, Math. Ann. 20 (1882), 1-44 MR1510147
  14. R. Fox, L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126 Zbl0117.41101MR150755
  15. R. H. Fox, On the complementary domains of a certain pair of inequivalent knots, Nederl. Akad. Wetensch. Proc. Ser. A. = Indagationes Math. 14 (1952), 37-40 Zbl0046.16802MR48024
  16. Wolfgang Franz, Über die Torsion einer Überdeckung., J. Reine Angew. Math. 173 (1935), 245-254 Zbl0012.12702
  17. Stefan Friedl, Stefano Vidussi, Twisted Alexander polynomials and symplectic structures, Amer. J. Math. 130 (2008), 455-484 Zbl1154.57021MR2405164
  18. Juan González-Meneses, Basic results on braid groups, Ann. Math. Blaise Pascal 18 (2011), 15-59 Zbl1264.20035
  19. A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-60 MR1510692
  20. Egbert R. Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933), 255-267 Zbl0006.41502MR1506962
  21. Paul Kirk, Charles Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661 Zbl0928.57005MR1670420
  22. Paul Kirk, Charles Livingston, Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999), 663-671 Zbl0928.57006MR1670424
  23. Teruaki Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442 Zbl0863.57001MR1405595
  24. Vik. S. Kulikov, M. Taĭkher, Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 89-120 Zbl1004.14005MR1770673
  25. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), 833-851 Zbl0524.14026MR683005
  26. A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367 (1986), 103-114 Zbl0576.14019MR839126
  27. A. Libgober, Invariants of plane algebraic curves via representations of the braid groups, Invent. Math. 95 (1989), 25-30 Zbl0674.14015MR969412
  28. A. Libgober, Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) 36 (2001), 215-254, Kluwer Acad. Publ., Dordrecht Zbl1045.14016MR1866902
  29. Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380 Zbl0986.57003MR1852950
  30. Wilhelm Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), 617-646 Zbl0009.03901MR1512913
  31. G. Massuyeau, An introduction to the abelian Reidemeister torsion of three-dimensional manifolds, Ann. Math. Blaise Pascal 18 (2011), 61-140 Zbl1218.57011
  32. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
  33. John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137-147 Zbl0108.36502MR141115
  34. B. Moishezon, Algebraic surfaces and the arithmetic of braids. I, Arithmetic and geometry, Vol. II 36 (1983), 199-269, Birkhäuser Boston, Boston, MA Zbl0592.14012MR717613
  35. C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26 Zbl0078.16402MR90053
  36. C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 169-172 Zbl0078.16401MR82671
  37. V. G. Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986), 97-147, 240 Zbl0602.57005MR832411
  38. Vladimir Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561
  39. Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256 Zbl0822.57006MR1273784
  40. Friedhelm Waldhausen, On irreducible 3 -manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88 Zbl0157.30603MR224099
  41. W. Wirtinger, Über die Verzweigungen bei Funktionen von zwei Veränderlichen, Jahresberichte D. M. V. 14 (1905) 
  42. W. Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Math. Ann. 97 (1927), 357-375 Zbl52.0342.03MR1512366
  43. Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), 305-328 Zbl55.0806.01MR1506719

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.