Braids in Pau – An Introduction
Enrique Artal Bartolo[1]; Vincent Florens[2]
- [1] Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza, c/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain
- [2] Laboratoire de Mathématiques et de leurs Applications - PAU UMR CNRS 5142 Bâtiment IPRA - Université de Pau et des Pays de l’Adour Avenue de l’Université - BP 1155 64013 PAU CEDEX, France
Annales mathématiques Blaise Pascal (2011)
- Volume: 18, Issue: 1, page 1-14
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topArtal Bartolo, Enrique, and Florens, Vincent. "Braids in Pau – An Introduction." Annales mathématiques Blaise Pascal 18.1 (2011): 1-14. <http://eudml.org/doc/219757>.
@article{ArtalBartolo2011,
abstract = {In this work, we describe the historic links between the study of $3$-dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.},
affiliation = {Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza, c/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Laboratoire de Mathématiques et de leurs Applications - PAU UMR CNRS 5142 Bâtiment IPRA - Université de Pau et des Pays de l’Adour Avenue de l’Université - BP 1155 64013 PAU CEDEX, France},
author = {Artal Bartolo, Enrique, Florens, Vincent},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Knots; curves; braid groups; torsion; Alexander polynomial; knots},
language = {eng},
month = {1},
number = {1},
pages = {1-14},
publisher = {Annales mathématiques Blaise Pascal},
title = {Braids in Pau – An Introduction},
url = {http://eudml.org/doc/219757},
volume = {18},
year = {2011},
}
TY - JOUR
AU - Artal Bartolo, Enrique
AU - Florens, Vincent
TI - Braids in Pau – An Introduction
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 1
EP - 14
AB - In this work, we describe the historic links between the study of $3$-dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.
LA - eng
KW - Knots; curves; braid groups; torsion; Alexander polynomial; knots
UR - http://eudml.org/doc/219757
ER -
References
top- J. W. Alexander, A lemma on a system of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923), 93-95
- J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306 Zbl54.0603.03MR1501429
- E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72
- J. Carmona, Monodromía de trenzas de curvas algebraicas planas, (2003)
- Fabrizio Catanese, Bronislaw Wajnryb, The 3-cuspidal quartic and braid monodromy of degree 4 coverings, Projective varieties with unexpected properties (2005), 113-129, Walter de Gruyter GmbH & Co. KG, Berlin Zbl1110.14037MR2202250
- A. Cayley, A theorem on groups, Math. Ann. 13 (1878), 561-565 Zbl10.0105.01MR1509978
- O. Chisini, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. 66 (1933), 1141-1155 Zbl0008.22001
- J. I. Cogolludo, Braid monodromy of algebraic curve, Ann. Math. Blaise Pascal 18 (2011), 141-209 Zbl1254.32043
- J. I. Cogolludo Agustín, V. Florens, Twisted Alexander polynomials of plane algebraic curves, J. Lond. Math. Soc. (2) 76 (2007), 105-121 Zbl1151.14022MR2351611
- A. I. Degtyarev, A divisibility theorem for the Alexander polynomial of a plane algebraic curve, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), 146-156, 300 Zbl1075.14025MR1879260
- M. Dehn, Über die Topologie des dreidimensionalen Raumes, Math. Ann. 69 (1910), 137-168 Zbl41.0543.01MR1511580
- M. Dehn, Die beiden Kleeblattschlingen, Math. Ann. 75 (1914), 402-413 MR1511799
- Walther Dyck, Gruppentheoretische Studien, Math. Ann. 20 (1882), 1-44 MR1510147
- R. Fox, L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126 Zbl0117.41101MR150755
- R. H. Fox, On the complementary domains of a certain pair of inequivalent knots, Nederl. Akad. Wetensch. Proc. Ser. A. = Indagationes Math. 14 (1952), 37-40 Zbl0046.16802MR48024
- Wolfgang Franz, Über die Torsion einer Überdeckung., J. Reine Angew. Math. 173 (1935), 245-254 Zbl0012.12702
- Stefan Friedl, Stefano Vidussi, Twisted Alexander polynomials and symplectic structures, Amer. J. Math. 130 (2008), 455-484 Zbl1154.57021MR2405164
- Juan González-Meneses, Basic results on braid groups, Ann. Math. Blaise Pascal 18 (2011), 15-59 Zbl1264.20035
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-60 MR1510692
- Egbert R. Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933), 255-267 Zbl0006.41502MR1506962
- Paul Kirk, Charles Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), 635-661 Zbl0928.57005MR1670420
- Paul Kirk, Charles Livingston, Twisted knot polynomials: inversion, mutation and concordance, Topology 38 (1999), 663-671 Zbl0928.57006MR1670424
- Teruaki Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math. 174 (1996), 431-442 Zbl0863.57001MR1405595
- Vik. S. Kulikov, M. Taĭkher, Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 89-120 Zbl1004.14005MR1770673
- A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), 833-851 Zbl0524.14026MR683005
- A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367 (1986), 103-114 Zbl0576.14019MR839126
- A. Libgober, Invariants of plane algebraic curves via representations of the braid groups, Invent. Math. 95 (1989), 25-30 Zbl0674.14015MR969412
- A. Libgober, Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) 36 (2001), 215-254, Kluwer Acad. Publ., Dordrecht Zbl1045.14016MR1866902
- Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), 361-380 Zbl0986.57003MR1852950
- Wilhelm Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), 617-646 Zbl0009.03901MR1512913
- G. Massuyeau, An introduction to the abelian Reidemeister torsion of three-dimensional manifolds, Ann. Math. Blaise Pascal 18 (2011), 61-140 Zbl1218.57011
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426 Zbl0147.23104MR196736
- John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137-147 Zbl0108.36502MR141115
- B. Moishezon, Algebraic surfaces and the arithmetic of braids. I, Arithmetic and geometry, Vol. II 36 (1983), 199-269, Birkhäuser Boston, Boston, MA Zbl0592.14012MR717613
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26 Zbl0078.16402MR90053
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 169-172 Zbl0078.16401MR82671
- V. G. Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986), 97-147, 240 Zbl0602.57005MR832411
- Vladimir Turaev, Introduction to combinatorial torsions, (2001), Birkhäuser Verlag, Basel Zbl0970.57001MR1809561
- Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), 241-256 Zbl0822.57006MR1273784
- Friedhelm Waldhausen, On irreducible -manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88 Zbl0157.30603MR224099
- W. Wirtinger, Über die Verzweigungen bei Funktionen von zwei Veränderlichen, Jahresberichte D. M. V. 14 (1905)
- W. Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Math. Ann. 97 (1927), 357-375 Zbl52.0342.03MR1512366
- Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), 305-328 Zbl55.0806.01MR1506719
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.