The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology

Curtis T. McMullen

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 2, page 153-171
  • ISSN: 0012-9593

How to cite

top

McMullen, Curtis T.. "The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology." Annales scientifiques de l'École Normale Supérieure 35.2 (2002): 153-171. <http://eudml.org/doc/82567>.

@article{McMullen2002,
author = {McMullen, Curtis T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Alexander norm},
language = {eng},
number = {2},
pages = {153-171},
publisher = {Elsevier},
title = {The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology},
url = {http://eudml.org/doc/82567},
volume = {35},
year = {2002},
}

TY - JOUR
AU - McMullen, Curtis T.
TI - The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 2
SP - 153
EP - 171
LA - eng
KW - Alexander norm
UR - http://eudml.org/doc/82567
ER -

References

top
  1. [1] Adams C., Hildebrand M., Weeks J., Hyperbolic invariants of knots and links, Trans. Amer. Math. Soc.326 (1991) 1-56. Zbl0733.57002MR994161
  2. [2] Alexander J.W., Topological invariants of knots and links, Trans. Amer. Math. Soc.30 (1928) 275-306. Zbl54.0603.03MR1501429JFM54.0603.03
  3. [3] Blanchfield R.C., Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math.65 (1957) 340-356. Zbl0080.16601MR85512
  4. [4] Burde G., Zieschang H., Knots, Walter de Gruyter, 1985. Zbl0568.57001MR808776
  5. [5] Crowell R.H., Genus of alternating link types, Ann. of Math.69 (1959) 258-275. Zbl0111.35803MR99665
  6. [6] Crowell R.H., Fox R.H., Introduction to Knot Theory, Springer-Verlag, 1977. Zbl0362.55001MR445489
  7. [7] Dunfield N., Alexander and Thurston norms of fibered 3-manifolds, Pacific J. Math., To appear. Zbl1049.57012MR1863406
  8. [8] Fintushel R., Stern R., Knots, links and 4-manifolds, Invent. Math.134 (1998) 363-400. Zbl0914.57015MR1650308
  9. [9] Fox R.H., Free differential calculus I, II, III, Ann. of Math.57, 59, 64 (1956) 547-560, 196–210, 407–419. Zbl0142.22303MR95876
  10. [10] Fried D., Fibrations over S1 with pseudo-Anosov monodromy, in: Travaux de Thurston sur les surfaces, Astérisque, 66–67, 1979, pp. 251-265. Zbl0446.57023
  11. [11] Gabai D., Foliations and genera of links, Topology23 (1984) 381-394. Zbl0567.57021MR780731
  12. [12] Gabai D., Detecting fibred links in S3, Comment. Math. Helv.61 (1986) 519-555. Zbl0621.57003MR870705
  13. [13] Gordon C., Some aspects of classical knot theory, in: Knot Theory (Proc. Sem., Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer-Verlag, 1978. Zbl0386.57002MR521730
  14. [14] Greenberg M.J., Harper J.R., Algebraic Topology, Benjamin/Cummings Publishing, 1981. Zbl0498.55001MR643101
  15. [15] Harer J.L., How to construct all fibered knots and links, Topology21 (1972) 263-280. Zbl0504.57002MR649758
  16. [16] Hillman J.A., Alexander Ideals of Links, Lecture Notes in Math., 895, Springer-Verlag, 1981. Zbl0491.57001MR653808
  17. [17] Hironaka E., Torsion points on an algebraic subset of an affine torus, Internat. Math. Res. Notices (1996) 953-982. Zbl0916.14012MR1422370
  18. [18] Hironaka E., Alexander stratifications of character varieties, Ann. Inst. Fourier (Grenoble)47 (1997) 555-583. Zbl0870.57003MR1450425
  19. [19] Jaco W., Lectures on 3-Manifold Topology, American Mathematical Society, 1980. MR565450
  20. [20] Kronheimer P., Embedded surfaces and gauge theory in three and four dimensions, in: Surveys in Differential Geometry, Vol. III (Cambridge, MA, 1996), Int. Press, 1998, pp. 243-298. Zbl0965.57030MR1677890
  21. [21] Kronheimer P., Mrowka T., Scalar curvature and the Thurston norm, Math. Res. Lett.4 (1997) 931-937. Zbl0892.57011MR1492131
  22. [22] McMullen C., Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Scient. Éc. Norm. Sup.33 (2000) 519-560. Zbl1013.57010MR1832823
  23. [23] McMullen C., Taubes C., 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations, Math. Res. Lett.6 (1999) 681-696. Zbl0964.53051MR1739225
  24. [24] Meng G., Taubes C.H., S ̲ W =Milnor torsion, Math. Res. Lett.3 (1996) 661-674. Zbl0870.57018MR1418579
  25. [25] Milnor J., Infinite cyclic coverings, in: Collected Papers, Vol. 2. The Fundamental Group, Publish or Perish, 1994, pp. 71-89. Zbl0857.01016
  26. [26] Murasugi K., On the genus of the alternating knot, I, II, J. Math. Soc. Japan10 (1958) 94-105, 235–248. Zbl0106.16701MR99664
  27. [27] Murasugi K., On a certain subgroup of the group of an alternating link, Amer. J. Math.85 (1963) 544-550. Zbl0117.17201MR157375
  28. [28] Oertel U., Homology branched surfaces: Thurston's norm on H2(M3), in: Epstein D.B. (Ed.), Low-dimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253-272. Zbl0628.57011MR903869
  29. [29] Rolfsen D., Knots and Links, Publish or Perish, 1976. Zbl0339.55004MR515288
  30. [30] Stallings J., Constructions of fibred knots and links, in: Algebraic and Geometric Topology, Proc. Sympos. Pure Math., 32, American Mathematical Society, 1978, pp. 55-60. Zbl0394.57007MR520522
  31. [31] Thurston W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc.339 (1986) 99-130. Zbl0585.57006MR823443
  32. [32] Turaev V.G., The Alexander polynomial of a three-dimensional manifold, Math. USSR Sb.26 (1975) 313-329. Zbl0339.57002MR383425
  33. [33] Vidussi S., The Alexander norm is smaller than the Thurston norm: a Seiberg–Witten proof, Preprint 99-6, École Polytechnique. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.