The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 2, page 153-171
- ISSN: 0012-9593
Access Full Article
topHow to cite
topMcMullen, Curtis T.. "The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology." Annales scientifiques de l'École Normale Supérieure 35.2 (2002): 153-171. <http://eudml.org/doc/82567>.
@article{McMullen2002,
author = {McMullen, Curtis T.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Alexander norm},
language = {eng},
number = {2},
pages = {153-171},
publisher = {Elsevier},
title = {The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology},
url = {http://eudml.org/doc/82567},
volume = {35},
year = {2002},
}
TY - JOUR
AU - McMullen, Curtis T.
TI - The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 2
SP - 153
EP - 171
LA - eng
KW - Alexander norm
UR - http://eudml.org/doc/82567
ER -
References
top- [1] Adams C., Hildebrand M., Weeks J., Hyperbolic invariants of knots and links, Trans. Amer. Math. Soc.326 (1991) 1-56. Zbl0733.57002MR994161
- [2] Alexander J.W., Topological invariants of knots and links, Trans. Amer. Math. Soc.30 (1928) 275-306. Zbl54.0603.03MR1501429JFM54.0603.03
- [3] Blanchfield R.C., Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math.65 (1957) 340-356. Zbl0080.16601MR85512
- [4] Burde G., Zieschang H., Knots, Walter de Gruyter, 1985. Zbl0568.57001MR808776
- [5] Crowell R.H., Genus of alternating link types, Ann. of Math.69 (1959) 258-275. Zbl0111.35803MR99665
- [6] Crowell R.H., Fox R.H., Introduction to Knot Theory, Springer-Verlag, 1977. Zbl0362.55001MR445489
- [7] Dunfield N., Alexander and Thurston norms of fibered 3-manifolds, Pacific J. Math., To appear. Zbl1049.57012MR1863406
- [8] Fintushel R., Stern R., Knots, links and 4-manifolds, Invent. Math.134 (1998) 363-400. Zbl0914.57015MR1650308
- [9] Fox R.H., Free differential calculus I, II, III, Ann. of Math.57, 59, 64 (1956) 547-560, 196–210, 407–419. Zbl0142.22303MR95876
- [10] Fried D., Fibrations over S1 with pseudo-Anosov monodromy, in: Travaux de Thurston sur les surfaces, Astérisque, 66–67, 1979, pp. 251-265. Zbl0446.57023
- [11] Gabai D., Foliations and genera of links, Topology23 (1984) 381-394. Zbl0567.57021MR780731
- [12] Gabai D., Detecting fibred links in S3, Comment. Math. Helv.61 (1986) 519-555. Zbl0621.57003MR870705
- [13] Gordon C., Some aspects of classical knot theory, in: Knot Theory (Proc. Sem., Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer-Verlag, 1978. Zbl0386.57002MR521730
- [14] Greenberg M.J., Harper J.R., Algebraic Topology, Benjamin/Cummings Publishing, 1981. Zbl0498.55001MR643101
- [15] Harer J.L., How to construct all fibered knots and links, Topology21 (1972) 263-280. Zbl0504.57002MR649758
- [16] Hillman J.A., Alexander Ideals of Links, Lecture Notes in Math., 895, Springer-Verlag, 1981. Zbl0491.57001MR653808
- [17] Hironaka E., Torsion points on an algebraic subset of an affine torus, Internat. Math. Res. Notices (1996) 953-982. Zbl0916.14012MR1422370
- [18] Hironaka E., Alexander stratifications of character varieties, Ann. Inst. Fourier (Grenoble)47 (1997) 555-583. Zbl0870.57003MR1450425
- [19] Jaco W., Lectures on 3-Manifold Topology, American Mathematical Society, 1980. MR565450
- [20] Kronheimer P., Embedded surfaces and gauge theory in three and four dimensions, in: Surveys in Differential Geometry, Vol. III (Cambridge, MA, 1996), Int. Press, 1998, pp. 243-298. Zbl0965.57030MR1677890
- [21] Kronheimer P., Mrowka T., Scalar curvature and the Thurston norm, Math. Res. Lett.4 (1997) 931-937. Zbl0892.57011MR1492131
- [22] McMullen C., Polynomial invariants for fibered 3-manifolds and Teichmüller geodesics for foliations, Ann. Scient. Éc. Norm. Sup.33 (2000) 519-560. Zbl1013.57010MR1832823
- [23] McMullen C., Taubes C., 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations, Math. Res. Lett.6 (1999) 681-696. Zbl0964.53051MR1739225
- [24] Meng G., Taubes C.H., =Milnor torsion, Math. Res. Lett.3 (1996) 661-674. Zbl0870.57018MR1418579
- [25] Milnor J., Infinite cyclic coverings, in: Collected Papers, Vol. 2. The Fundamental Group, Publish or Perish, 1994, pp. 71-89. Zbl0857.01016
- [26] Murasugi K., On the genus of the alternating knot, I, II, J. Math. Soc. Japan10 (1958) 94-105, 235–248. Zbl0106.16701MR99664
- [27] Murasugi K., On a certain subgroup of the group of an alternating link, Amer. J. Math.85 (1963) 544-550. Zbl0117.17201MR157375
- [28] Oertel U., Homology branched surfaces: Thurston's norm on H2(M3), in: Epstein D.B. (Ed.), Low-dimensional Topology and Kleinian Groups, Cambridge Univ. Press, 1986, pp. 253-272. Zbl0628.57011MR903869
- [29] Rolfsen D., Knots and Links, Publish or Perish, 1976. Zbl0339.55004MR515288
- [30] Stallings J., Constructions of fibred knots and links, in: Algebraic and Geometric Topology, Proc. Sympos. Pure Math., 32, American Mathematical Society, 1978, pp. 55-60. Zbl0394.57007MR520522
- [31] Thurston W.P., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc.339 (1986) 99-130. Zbl0585.57006MR823443
- [32] Turaev V.G., The Alexander polynomial of a three-dimensional manifold, Math. USSR Sb.26 (1975) 313-329. Zbl0339.57002MR383425
- [33] Vidussi S., The Alexander norm is smaller than the Thurston norm: a Seiberg–Witten proof, Preprint 99-6, École Polytechnique.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.