More cubic surfaces violating the Hasse principle

Jörg Jahnel[1]

  • [1] FB6 Mathematik Walter-Flex-Str. 3 D-57068 Siegen, Germany

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 2, page 471-477
  • ISSN: 1246-7405

Abstract

top
We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.

How to cite

top

Jahnel, Jörg. "More cubic surfaces violating the Hasse principle." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 471-477. <http://eudml.org/doc/219781>.

@article{Jahnel2011,
abstract = {We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.},
affiliation = {FB6 Mathematik Walter-Flex-Str. 3 D-57068 Siegen, Germany},
author = {Jahnel, Jörg},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cubic surface; Hasse principle; counter-examples},
language = {eng},
month = {6},
number = {2},
pages = {471-477},
publisher = {Société Arithmétique de Bordeaux},
title = {More cubic surfaces violating the Hasse principle},
url = {http://eudml.org/doc/219781},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Jahnel, Jörg
TI - More cubic surfaces violating the Hasse principle
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 471
EP - 477
AB - We generalize L. J. Mordell’s construction of cubic surfaces for which the Hasse principle fails.
LA - eng
KW - cubic surface; Hasse principle; counter-examples
UR - http://eudml.org/doc/219781
ER -

References

top
  1. J. Jahnel, Brauer groups, Tamagawa measures, and rational points on algebraic varieties. Habilitation thesis, Göttingen, 2008. 
  2. Yu. I. Manin, Cubic forms, algebra, geometry, arithmetic. North-Holland Publishing Co. and American Elsevier Publishing Co., Amsterdam-London and New York, 1974. Zbl0277.14014MR833513
  3. L. J. Mordell, On the conjecture for the rational points on a cubic surface. J. London Math. Soc. 40 (1965), 149–158. Zbl0124.02605MR169815
  4. Sir Peter Swinnerton-Dyer, Two special cubic surfaces. Mathematika 9 (1962), 54–56. Zbl0103.38302MR139989
  5. J. Tate, Global class field theory. In: Algebraic number theory, Edited by J. W. S. Cassels and A. Fröhlich, Academic Press and Thompson Book Co., London and Washington, 1967. Zbl1179.11041MR220697

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.