On the order three Brauer classes for cubic surfaces

Andreas-Stephan Elsenhans; Jörg Jahnel

Open Mathematics (2012)

  • Volume: 10, Issue: 3, page 903-926
  • ISSN: 2391-5455

Abstract

top
We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.

How to cite

top

Andreas-Stephan Elsenhans, and Jörg Jahnel. "On the order three Brauer classes for cubic surfaces." Open Mathematics 10.3 (2012): 903-926. <http://eudml.org/doc/269060>.

@article{Andreas2012,
abstract = {We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.},
author = {Andreas-Stephan Elsenhans, Jörg Jahnel},
journal = {Open Mathematics},
keywords = {Cubic surface; Steiner trihedron; Triplet; Twisted cubic curve; Weak approximation; Explicit Brauer-Manin obstruction; explicit Brauer-Manin obstruction; cubic surface; triplet; twisted cubic curve; weak approximation},
language = {eng},
number = {3},
pages = {903-926},
title = {On the order three Brauer classes for cubic surfaces},
url = {http://eudml.org/doc/269060},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Andreas-Stephan Elsenhans
AU - Jörg Jahnel
TI - On the order three Brauer classes for cubic surfaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 903
EP - 926
AB - We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.
LA - eng
KW - Cubic surface; Steiner trihedron; Triplet; Twisted cubic curve; Weak approximation; Explicit Brauer-Manin obstruction; explicit Brauer-Manin obstruction; cubic surface; triplet; twisted cubic curve; weak approximation
UR - http://eudml.org/doc/269060
ER -

References

top
  1. [1] Buckley A., Košir T., Determinantal representations of smooth cubic surfaces, Geom. Dedicata, 2007, 125, 115–140 http://dx.doi.org/10.1007/s10711-007-9144-x Zbl1117.14038
  2. [2] Cartan H., Eilenberg S., Homological Algebra, Princeton University Press, Princeton, 1956 
  3. [3] Cassels J.W.S., Guy M.J.T., On the Hasse principle for cubic surfaces, Mathematika, 1966, 13, 111–120 http://dx.doi.org/10.1112/S0025579300003879 Zbl0151.03405
  4. [4] Clebsch A., Die Geometrie auf den Flächen dritter Ordnung, J. Reine Angew. Math., 1866, 1866(65), 359–380 http://dx.doi.org/10.1515/crll.1866.65.359 
  5. [5] Colliot-Thélène J.-L., Kanevsky D., Sansuc J.-J., Arithmétique des surfaces cubiques diagonales, In: Diophantine Approximation and Transcendence Theory, Bonn, May–June, 1985, Lecture Notes in Math., 1290, Springer, Berlin, 1987, 1–108 http://dx.doi.org/10.1007/BFb0078705 
  6. [6] Cremona L., Sulle ventisette rette della superficie del terzo ordine, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1870, 3, 209–219 
  7. [7] Dolgachev I.V., Classical Algebraic Geometry, Cambridge University Press (in press), available at http://www.math.lsa.umich.edu/_idolga/CAG.pdf Zbl1252.14001
  8. [8] Elsenhans A.-S., Jahnel J., Experiments with general cubic surfaces, In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, 1, Progr. Math., 269, Birkhäuser, Boston, 2007, 637–653 
  9. [9] Elsenhans A.-S., Jahnel J., On the Brauer-Manin obstruction for cubic surfaces, J. Comb. Number Theory, 2010, 2(2), 107–128 Zbl1245.14020
  10. [10] Elsenhans A.-S., Jahnel J., Cubic surfaces with a Galois invariant pair of Steiner trihedra, Int. J. Number Theory, 2011, 7(4), 947–970 http://dx.doi.org/10.1142/S1793042111004253 Zbl1233.11073
  11. [11] Elsenhans A.-S., Jahnel J., On the quasi group of a cubic surface over a finite field, J. Number Theory (in press) 
  12. [12] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977 
  13. [13] Henderson A., The Twenty-Seven Lines upon the Cubic Surface, Hafner, New York, 1960 Zbl42.0661.01
  14. [14] Jahnel J., More cubic surfaces violating the Hasse principle, J. Théor. Nombres Bordeaux, 2011, 23(2), 471–477 http://dx.doi.org/10.5802/jtnb.772 Zbl1233.11033
  15. [15] Kresch A., Tschinkel Yu., On the arithmetic of del Pezzo surfaces of degree 2, Proc. London Math. Soc., 2004, 89(3), 545–569 http://dx.doi.org/10.1112/S002461150401490X Zbl1075.14019
  16. [16] Kunyavskiĭ B.È., Skorobogatov A.N., Tsfasman M.A., Del Pezzo Surfaces of Degree Four, Mém. Soc. Math. France (N.S.), 37, Société Mathématique de France, Marseille, 1989 Zbl0705.14039
  17. [17] Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Math. Library, 4, North-Holland/Elsevier, Amsterdam-London/New York, 1974 
  18. [18] Mordell L.J., On the conjecture for the rational points on a cubic surface, J. London Math. Soc., 1965, 40, 149–158 http://dx.doi.org/10.1112/jlms/s1-40.1.149 Zbl0124.02605
  19. [19] Neukirch J., Klassenkörpertheorie, 2nd ed., Springer-Lehrbuch, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-3-642-17325-7 
  20. [20] Peyre E., Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J., 1995, 79(1), 101–218 http://dx.doi.org/10.1215/S0012-7094-95-07904-6 
  21. [21] Peyre E., Tschinkel Yu., Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp., 2001, 70(233), 367–387 http://dx.doi.org/10.1090/S0025-5718-00-01189-3 Zbl0961.14012
  22. [22] Schläfli L., An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface, The Quarterly Journal of Pure and Applied Mathematics, 1858, 2, 110–120 
  23. [23] Serre J.-P., Local class field theory, In: Algebraic Number Theory, Brighton, 1965, Thompson, Washington, 1967, 128–161 
  24. [24] Steiner J., Über die Flächen dritten Grades, J. Reine Angew. Math., 1857, 53, 133–141 http://dx.doi.org/10.1515/crll.1857.53.133 
  25. [25] Swinnerton-Dyer H.P.F., Two special cubic surfaces, Mathematika, 1962, 9, 54–56 http://dx.doi.org/10.1112/S0025579300003090 Zbl0103.38302
  26. [26] Swinnerton-Dyer H.P.F., Universal equivalence for cubic surfaces over finite and local fields, In: Symposia Mathematica, 24, Rome, April 9–14, 1979, Academic Press, London-New York, 1981, 111–143 
  27. [27] Swinnerton-Dyer P., The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc., 1993, 113(3), 449–460 http://dx.doi.org/10.1017/S0305004100076106 Zbl0804.14018
  28. [28] Tate J.T., Global class field theory, In: Algebraic Number Theory, Brighton, 1965, Thompson, Washington, 1967, 162–203 Zbl1179.11041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.