Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields

Yves Colin de Verdière[1]; Nabila Torki-Hamza[2]; Françoise Truc[1]

  • [1] Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France)
  • [2] Université de Carthage, Faculté des Sciences de Bizerte, Mathématiques et Applications (05/UR/15-02), 7021-Bizerte (Tunisie)

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 3, page 599-611
  • ISSN: 0240-2963

Abstract

top
We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.

How to cite

top

Colin de Verdière, Yves, Torki-Hamza, Nabila, and Truc, Françoise. "Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 599-611. <http://eudml.org/doc/219819>.

@article{ColindeVerdière2011,
abstract = {We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.},
affiliation = {Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France); Université de Carthage, Faculté des Sciences de Bizerte, Mathématiques et Applications (05/UR/15-02), 7021-Bizerte (Tunisie); Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves, Torki-Hamza, Nabila, Truc, Françoise},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {essential selfadjointness; graph; magnetic field},
language = {eng},
month = {7},
number = {3},
pages = {599-611},
publisher = {Université Paul Sabatier, Toulouse},
title = {Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields},
url = {http://eudml.org/doc/219819},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Colin de Verdière, Yves
AU - Torki-Hamza, Nabila
AU - Truc, Françoise
TI - Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 599
EP - 611
AB - We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.
LA - eng
KW - essential selfadjointness; graph; magnetic field
UR - http://eudml.org/doc/219819
ER -

References

top
  1. Biggs (N.).— Algebraic Graph Theory, Cambridge University Press (1974). Zbl0797.05032MR347649
  2. Braverman (M.), Milatovic (O.) & Shubin (M.).— Essential self-adjointness of Schrödinger-type operators on manifolds, Russian Math. Surveys57, p. 641-692 (2002). Zbl1052.58027MR1942115
  3. Colin de Verdière (Y.).— Spectre de graphes, Cours spécialisés 4, Société mathématique de France (1998). Zbl0913.05071
  4. Colin de Verdière (Y.).— Asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys. 105 p. 327-335 (1986). Zbl0612.35102MR849211
  5. Colin de Verdière (Y.).— Multiplicities of eigenvalues and tree-width of graphs, J. Combin. Theory Ser. B, 74 p. 121-146 (1998). Zbl1027.05064MR1654157
  6. Colin de Verdière (Y.) & Truc (F.).— Confining quantum particles with a purely magnetic field, Ann. Inst. Fourier (Grenoble), 60 (7) p. 2333-2356 (2010). Zbl1251.81040
  7. Colin de Verdière (Y.), Torki-Hamza (N.) & Truc (F.).— Essential self-adjointness for combinatorial Schrödinger operators II. Metrically non complete graphs, Math. Phys. Anal. Geom. 14 (1) p. 21-38 (2011). Zbl1244.05155MR2782792
  8. Dodziuk (J.).— Elliptic operators on infinite graphs, Analysis geometry and topology of elliptic operators, 353-368, World Sc. Publ., Hackensack NJ. (2006). Zbl1127.58034MR2246774
  9. Dunford (N.) & Schwartz (J. T.).— Linear operator II, Spectral Theory, John Wiley & Sons, New York (1971). Zbl0084.10402MR1009163
  10. Lieb (E.) & Loss (M.).— Fluxes, Laplacians, and Kasteleyn’s theorem, Duke Math. J.,71 p. 337-363 (1993). Zbl0787.05083MR1233440
  11. Milatovic (O.).— Essential self-adjointness of discrete magnetic Schrödinger operators, ArXiv:1105.3129v1 [math.SP](2011). 
  12. Milatovic (O.).— Essential Self-adjointness of magnetic Schrödinger operators on locally finite graphs, Integral Equations and Operator Theory, 71 (1) p.13-27 (2011). Zbl1234.35077
  13. Nenciu (G.) & Nenciu (I.).— On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in n , Ann. Henri Poincaré, 10 p. 377-394 (2009). Zbl1205.81088MR2511891
  14. Oleinik (I.M.).— On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds, Mathematical Notes 54 (3) p. 934-939 (1993). Zbl0818.58047
  15. Reed (M.) & Simon (B.).— Methods of Modern mathematical Physics I,Functional analysis, (1980), II, Fourier analysis, Self-adjointness (1975), New York Academic Press. Zbl0459.46001MR751959
  16. Shubin (M).— Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Func. Anal. 186 p. 92-116 (2001). Zbl0997.58021MR1863293
  17. Shubin (M.).— Classical and quantum completness for the Schrödinger operators on non-compact manifolds, Geometric Aspects of Partial Differential Equations (Proc. Sympos., Roskilde, Denmark (1998)) Amer. Math. Soc. Providence, RI, p. 257-269 (1999). Zbl0938.35111MR1714489
  18. Torki-Hamza (N.).— Laplaciens de graphes infinis I- Graphes métriquement complets, Confluentes Mathematici, 2 (3) p. 333-350 (2010). Zbl1203.05109MR2740044
  19. Torki-Hamza (N.).— Essential self-adjointness for combinatorial Schrödinger operators I- Metrically complete graphs, submitted in IWPM 2011, translation in English of [18]. 
  20. Torki-Hamza (N.).— Stabilité des valeurs propres avec champ magnétique sur une variété Riemannienne et sur un graphe, Thèse de doctorat de l’Université de Grenoble I, France, http://tel.archives-ouvertes.fr/tel-00555758/en/, (1989). 
  21. Wojiechowski (R.K.).— Stochastic completeness of graphs, Ph.D. Thesis, The graduate Center of the University of New-York (2008). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.