Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields
Yves Colin de Verdière[1]; Nabila Torki-Hamza[2]; Françoise Truc[1]
- [1] Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France)
- [2] Université de Carthage, Faculté des Sciences de Bizerte, Mathématiques et Applications (05/UR/15-02), 7021-Bizerte (Tunisie)
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 3, page 599-611
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topColin de Verdière, Yves, Torki-Hamza, Nabila, and Truc, Françoise. "Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields." Annales de la faculté des sciences de Toulouse Mathématiques 20.3 (2011): 599-611. <http://eudml.org/doc/219819>.
@article{ColindeVerdière2011,
abstract = {We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.},
affiliation = {Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France); Université de Carthage, Faculté des Sciences de Bizerte, Mathématiques et Applications (05/UR/15-02), 7021-Bizerte (Tunisie); Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves, Torki-Hamza, Nabila, Truc, Françoise},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {essential selfadjointness; graph; magnetic field},
language = {eng},
month = {7},
number = {3},
pages = {599-611},
publisher = {Université Paul Sabatier, Toulouse},
title = {Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields},
url = {http://eudml.org/doc/219819},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Colin de Verdière, Yves
AU - Torki-Hamza, Nabila
AU - Truc, Françoise
TI - Essential self-adjointness for combinatorial Schrödinger operators III- Magnetic fields
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 3
SP - 599
EP - 611
AB - We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.
LA - eng
KW - essential selfadjointness; graph; magnetic field
UR - http://eudml.org/doc/219819
ER -
References
top- Biggs (N.).— Algebraic Graph Theory, Cambridge University Press (1974). Zbl0797.05032MR347649
- Braverman (M.), Milatovic (O.) & Shubin (M.).— Essential self-adjointness of Schrödinger-type operators on manifolds, Russian Math. Surveys57, p. 641-692 (2002). Zbl1052.58027MR1942115
- Colin de Verdière (Y.).— Spectre de graphes, Cours spécialisés 4, Société mathématique de France (1998). Zbl0913.05071
- Colin de Verdière (Y.).— Asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys. 105 p. 327-335 (1986). Zbl0612.35102MR849211
- Colin de Verdière (Y.).— Multiplicities of eigenvalues and tree-width of graphs, J. Combin. Theory Ser. B, 74 p. 121-146 (1998). Zbl1027.05064MR1654157
- Colin de Verdière (Y.) & Truc (F.).— Confining quantum particles with a purely magnetic field, Ann. Inst. Fourier (Grenoble), 60 (7) p. 2333-2356 (2010). Zbl1251.81040
- Colin de Verdière (Y.), Torki-Hamza (N.) & Truc (F.).— Essential self-adjointness for combinatorial Schrödinger operators II. Metrically non complete graphs, Math. Phys. Anal. Geom. 14 (1) p. 21-38 (2011). Zbl1244.05155MR2782792
- Dodziuk (J.).— Elliptic operators on infinite graphs, Analysis geometry and topology of elliptic operators, 353-368, World Sc. Publ., Hackensack NJ. (2006). Zbl1127.58034MR2246774
- Dunford (N.) & Schwartz (J. T.).— Linear operator II, Spectral Theory, John Wiley & Sons, New York (1971). Zbl0084.10402MR1009163
- Lieb (E.) & Loss (M.).— Fluxes, Laplacians, and Kasteleyn’s theorem, Duke Math. J.,71 p. 337-363 (1993). Zbl0787.05083MR1233440
- Milatovic (O.).— Essential self-adjointness of discrete magnetic Schrödinger operators, ArXiv:1105.3129v1 [math.SP](2011).
- Milatovic (O.).— Essential Self-adjointness of magnetic Schrödinger operators on locally finite graphs, Integral Equations and Operator Theory, 71 (1) p.13-27 (2011). Zbl1234.35077
- Nenciu (G.) & Nenciu (I.).— On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in , Ann. Henri Poincaré, 10 p. 377-394 (2009). Zbl1205.81088MR2511891
- Oleinik (I.M.).— On the essential self-adjointness of the Schrödinger operator on complete Riemannian manifolds, Mathematical Notes 54 (3) p. 934-939 (1993). Zbl0818.58047
- Reed (M.) & Simon (B.).— Methods of Modern mathematical Physics I,Functional analysis, (1980), II, Fourier analysis, Self-adjointness (1975), New York Academic Press. Zbl0459.46001MR751959
- Shubin (M).— Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Func. Anal. 186 p. 92-116 (2001). Zbl0997.58021MR1863293
- Shubin (M.).— Classical and quantum completness for the Schrödinger operators on non-compact manifolds, Geometric Aspects of Partial Differential Equations (Proc. Sympos., Roskilde, Denmark (1998)) Amer. Math. Soc. Providence, RI, p. 257-269 (1999). Zbl0938.35111MR1714489
- Torki-Hamza (N.).— Laplaciens de graphes infinis I- Graphes métriquement complets, Confluentes Mathematici, 2 (3) p. 333-350 (2010). Zbl1203.05109MR2740044
- Torki-Hamza (N.).— Essential self-adjointness for combinatorial Schrödinger operators I- Metrically complete graphs, submitted in IWPM 2011, translation in English of [18].
- Torki-Hamza (N.).— Stabilité des valeurs propres avec champ magnétique sur une variété Riemannienne et sur un graphe, Thèse de doctorat de l’Université de Grenoble I, France, http://tel.archives-ouvertes.fr/tel-00555758/en/, (1989).
- Wojiechowski (R.K.).— Stochastic completeness of graphs, Ph.D. Thesis, The graduate Center of the University of New-York (2008).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.