Confining quantum particles with a purely magnetic field

Yves Colin de Verdière[1]; Françoise Truc[2]

  • [1] Institut Fourier UMR 5582 CNRS-UJF BP 74 38402 Saint Martin d’Hères Cedex (France)
  • [2] Unité mixte de recherche CNRS-UJF 5582 Institut Fourier BP 74, 38402-Saint Martin d’Hères Cedex (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 7, page 2333-2356
  • ISSN: 0373-0956

Abstract

top
We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These examples are highly simplified models of what is done for nuclear fusion in tokamacs. We also present some open problems.

How to cite

top

Colin de Verdière, Yves, and Truc, Françoise. "Confining quantum particles with a purely magnetic field." Annales de l’institut Fourier 60.7 (2010): 2333-2356. <http://eudml.org/doc/116336>.

@article{ColindeVerdière2010,
abstract = {We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These examples are highly simplified models of what is done for nuclear fusion in tokamacs. We also present some open problems.},
affiliation = {Institut Fourier UMR 5582 CNRS-UJF BP 74 38402 Saint Martin d’Hères Cedex (France); Unité mixte de recherche CNRS-UJF 5582 Institut Fourier BP 74, 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves, Truc, Françoise},
journal = {Annales de l’institut Fourier},
keywords = {Magnetic field; Schrödinger operator; self-adjointness; magnetic field},
language = {eng},
number = {7},
pages = {2333-2356},
publisher = {Association des Annales de l’institut Fourier},
title = {Confining quantum particles with a purely magnetic field},
url = {http://eudml.org/doc/116336},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Colin de Verdière, Yves
AU - Truc, Françoise
TI - Confining quantum particles with a purely magnetic field
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2333
EP - 2356
AB - We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These examples are highly simplified models of what is done for nuclear fusion in tokamacs. We also present some open problems.
LA - eng
KW - Magnetic field; Schrödinger operator; self-adjointness; magnetic field
UR - http://eudml.org/doc/116336
ER -

References

top
  1. Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators, 29 (1982), Princeton University Press, Princeton, NJ Zbl0503.35001MR745286
  2. Paul Alexandroff, Heinz Hopf, Topologie. Band I, (1972), Chelsea Publishing Co., Bronx, N. Y. Zbl0013.07904MR396210
  3. J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), 847-883 Zbl0399.35029MR518109
  4. Alexander Balinsky, Ari Laptev, Alexander V. Sobolev, Generalized Hardy inequality for the magnetic Dirichlet forms, J. Statist. Phys. 116 (2004), 507-521 Zbl1127.26015MR2083152
  5. Yves Colin de Verdière, L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys. 105 (1986), 327-335 Zbl0612.35102MR849211
  6. H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, (1987), Springer-Verlag, Berlin Zbl0619.47005MR883643
  7. Alain Dufresnoy, Un exemple de champ magnétique dans R ν , Duke Math. J. 50 (1983), 729-734 Zbl0532.35021MR714827
  8. Nelson Dunford, Jacob T. Schwartz, Linear operators. Part III: Spectral operators, (1971), Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney Zbl0635.47003MR412888
  9. László Erdős, Jan Philip Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate, Duke Math. J. 96 (1999), 127-173 Zbl1047.81022MR1663923
  10. László Erdős, Jan Philip Solovej, Magnetic Lieb-Thirring inequalities with optimal dependence on the field strength, J. Statist. Phys. 116 (2004), 475-506 Zbl1138.81017MR2083151
  11. László Erdős, Jan Philip Solovej, Uniform Lieb-Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field, Ann. Henri Poincaré 5 (2004), 671-741 Zbl1054.81016MR2090449
  12. Victor Guillemin, Alan Pollack, Differential topology, (1974), Prentice-Hall Inc., Englewood Cliffs, N.J. Zbl0361.57001MR348781
  13. Juha Heinonen, Lectures on Lipschitz analysis, 100 (2005), University of Jyväskylä, Jyväskylä Zbl1086.30003MR2177410
  14.  
  15. Teruo Ikebe, Tosio Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77-92 Zbl0103.31801MR142894
  16. H. Kalf, U.-W. Schmincke, J. Walter, R. Wüst, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens) (1975), 182-226. Lecture Notes in Math., Vol. 448, Springer, Berlin Zbl0311.47021MR397192
  17. Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III (1970), 87-208. Lecture Notes in Math., Vol. 170, Springer, Berlin Zbl0223.53028MR294568
  18. Ruishi Kuwabara, On spectra of the Laplacian on vector bundles, J. Math. Tokushima Univ. 16 (1982), 1-23 Zbl0504.53039MR691445
  19. Ruishi Kuwabara, Spectrum of the Schrödinger operator on a line bundle over complex projective spaces, Tohoku Math. J. (2) 40 (1988), 199-211 Zbl0652.53044MR943819
  20. Charles B. Morrey, Multiple integrals in the calculus of variations, (1966), Springer-Verlag New York, Inc., New York Zbl0142.38701MR202511
  21. Gheorghe Nenciu, Irina Nenciu, On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in n , Ann. Henri Poincaré 10 (2009), 377-394 Zbl1205.81088MR2511891
  22. Gheorghe Nenciu, Irina Nenciu, Remarks on essential self-adjointness for magnetic Schrödinger and Pauli operators on bounded domains in 2 , (2010) Zbl1242.81083
  23. Hans Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919), 340-359 Zbl47.0243.01MR1511935
  24. Michael Reed, Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, (1975), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0242.46001MR493420
  25. Mikhail Shubin, Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal. 186 (2001), 92-116 Zbl0997.58021MR1863293
  26. I. M. Sigal, Geometric methods in the quantum many-body problem. Nonexistence of very negative ions, Comm. Math. Phys. 85 (1982), 309-324 Zbl0503.47041MR676004
  27. Barry Simon, Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Rational Mech. Anal. 52 (1973), 44-48 Zbl0277.47007MR338548
  28. Barry Simon, Schrödinger operators with singular magnetic vector potentials, Math. Z. 131 (1973), 361-370 Zbl0277.47006MR322336
  29. Nabila Torki-Hamza, Stabilité des valeurs propres et champ magnétique sur une variété riemannienne et sur un graphe, (1989) 
  30. Françoise Truc, Trajectoires bornées d’une particule soumise à un champ magnétique symétrique linéaire, Ann. Inst. H. Poincaré Phys. Théor. 64 (1996), 127-154 Zbl0862.70005MR1386214
  31. Françoise Truc, Semi-classical asymptotics for magnetic bottles, Asymptot. Anal. 15 (1997), 385-395 Zbl0902.35079MR1487718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.