Superlinear equations, potential theory and weighted norm inequalities
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 223-269
Access Full Article
topHow to cite
topVerbitsky, Igor E.. "Superlinear equations, potential theory and weighted norm inequalities." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 223-269. <http://eudml.org/doc/220702>.
@inProceedings{Verbitsky1999,
author = {Verbitsky, Igor E.},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {223-269},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Superlinear equations, potential theory and weighted norm inequalities},
url = {http://eudml.org/doc/220702},
year = {1999},
}
TY - CLSWK
AU - Verbitsky, Igor E.
TI - Superlinear equations, potential theory and weighted norm inequalities
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 223
EP - 269
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/220702
ER -
References
top- Adams D. R., Hedberg L. I., Function spaces and potential theory, Springer-Verlag, Berlin 1996. (1996) MR1411441
- Adams D. R., Pierre M., Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier (Grenoble) 41 (1991), 117–135. (1991) Zbl0741.35012MR1112194
- Baras P., Semilinear problem with convex nonlinearity, In: Recent Advances in Nonlinear Elliptic and Parabolic Problems. P. Bénilan, M. Chipot, L. C. Evans and M. Pierre (eds.), Pitman Research Notes in Math. Sciences, 208, Longman, Harlow 1989, 202–215. (1989) Zbl0768.35030MR1035008
- Baras P., Pierre M., Critère d’existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 185–212. (1985) Zbl0599.35073MR0797270
- Bass R. F., Probabilistic techniques in analysis, Springer-Verlag, Berlin 1995. (1995) Zbl0817.60001MR1329542
- Birkhoff G., Lattice theory, Amer. Math. Soc., Amer. Math. Soc. Colloq. Publ., 25, Providence, RI 1979. (1979) Zbl0505.06001
- Brezis H., Cabre X., Some simple nonlinear PDE’s without solutions, Preprint 1997, 1–37. (1997) MR1638143
- Cascante C., Ortega J. M., Verbitsky I. E., On imbedding potential spaces into , To appear in Proc. London Math. Soc.
- Chung K. L., Zhao Z., From Brownian motion to Schrödinger’s equation, Springer-Verlag, Berlin 1995. (1995) Zbl0819.60068MR1329992
- Fefferman C., Stein E. M., Some maximal inequalities, Amer. J. Math. 93 (1971) 107–115. (1971) Zbl0222.26019MR0284802
- Fefferman R., Strong differentiation with respect to measures, Amer. J. Math. 103 (1981), 33–40. (1981) Zbl0475.42019MR0601461
- Frazier M., Jawerth B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34–170. (1990) Zbl0716.46031MR1070037
- Gurka P., Generalized Hardy’s inequality, Čas. Pěstování Mat. 109 (1984), 194–203. (1984) Zbl0537.26009MR0744875
- Hansson K., Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77–102. (1979) Zbl0437.31009MR0567435
- Hansson K., Maz’ya V. G. Verbitsky I. E., Criteria of solvability for multidimensional Riccati’s equations, Ark. Mat. 37 (1999), 87–120. (1999) MR1673427
- Hartman P., Ordinary differential equations, Birkhäuser, Boston 1982. (1982) Zbl0476.34002MR0658490
- Hedberg L. I., Wolff, Th. H., Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187. (1983) Zbl0508.31008MR0727526
- Hille E., Nonoscillation theorems, Trans. Amer. Math. Soc 64 (1948), 234–252. (1948) MR0027925
- Imm, Ch., Semilinear ODEs and Hardy’s inequality with weights, M.S. Thesis, Univ. of Missouri, Columbia 1997, 1–21. (1997)
- Kalton N. J., Verbitsky I. E., Nonlinear equations and weighted norm inequalities, To appear in Trans. Amer. Math. Soc. Zbl0948.35044MR1475688
- Kilpeläinen T., Malý J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137–161. (1994) MR1264000
- skii M. A. Krasnosel,’ Zabreiko P. P., Geometrical methods of nonlinear analysis, Springer-Verlag, Berlin 1984. (1984) MR0736839
- Kufner A., Triebel H., Generalization of Hardy’s inequality, Conf. Semin. Mat. Univ. Bari 156 (1978), 1–21. (1978) MR0541051
- Lions P. L., On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441–467. (1982) Zbl0511.35033MR0678562
- Malý J., Ziemer W. P., Fine Regularity of solutions of elliptic partial differential equations, Amer. Math. Soc., Providence, RI 1997. (1997) Zbl0882.35001MR1461542
- Maz’ya V. G., Classes of domains and embedding theorems for functional spaces, Dokl. Akad. Nauk SSSR, 133 (1960), 527–530. (1960) MR0126152
- Maz’ya V. G., On the theory of the -dimensional Schrödinger operator, Izv. Akad. Nauk SSSR, ser. Mat. 28 (1964), 1145–1172. (1964) MR0174879
- Maz’ya V. G., Sobolev Spaces, Springer-Verlag, Berlin 1985. (1985) MR0817985
- Maz’ya V. G., Netrusov Y., Some counterexamples for the theory of Sobolev spaces on bad domains, Potential Anal. 4 (1995), 47–65. (1995) Zbl0819.46023MR1313906
- Maz’ya V. G., Verbitsky I. E., Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), 81–115. (1995) Zbl0834.31006MR1340271
- Muckenhoupt B., Hardy’s inequalities with weights, Studia Math. 44 (1972), 31–38. (1972)
- Naïm L., Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183–281. (1957) Zbl0086.30603MR0100174
- Nazarov F., Treil S., Volberg A., Bellman functions and two weight inequalities for Haar multipliers, Preprint. Zbl0951.42007MR1685781
- Rochberg R., Size estimates for eigenvalues of singular integral operators and Schrödinger operators and for derivatives of quasiconformal mappings, Amer. J. Math. 117 (1995), 711–771. (1995) Zbl0845.42006MR1333943
- Sawyer E. T., Weighted norm inequalities for fractional maximal operators, Can. Math. Soc. Conf. Proceedings 1 (1981), 283–309. (1981) Zbl0546.42018MR0670111
- Sawyer E. T., A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), 1–11 (1982) Zbl0508.42023MR0676801
- Sawyer E. T., Two weight norm inequalities for certain maximal and integral operators, Trans. Amer. Math. Soc. 308 (1988), 533–545. (1988) MR0930072
- Sawyer E. T., Wheeden R. L., Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), 813–874. (1992) Zbl0783.42011MR1175693
- Sawyer E. T., Wheeden R. L., Zhao S., Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523–580. (1996) Zbl0873.42012MR1437584
- Selmi M., Comparaison des noyaux de Green sur les domaines , Rev. Roumaine Math. Pures Appl. 36 (1991), 91–100. (1991) MR1144538
- Stein E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton 1970. (1970) Zbl0207.13501MR0290095
- Tomaselli G., A class of inequalities, Boll. Un. Mat. Ital. 4 (1969), 622–631. (1969) Zbl0188.12103MR0255751
- Verbitsky I. E., Weighted norm inequalities for maximal operators and Pisier’s theorem on factorization through , Integral Equations Operator Theory 15 (1992), 121–153. (1992) MR1134691
- Verbitsky I. E., Imbedding and multiplier theorems for discrete Littlewood–Paley spaces, Pacific J. Math. 176 (1996), 529-556. (1996) Zbl0865.42009MR1435004
- Verbitsky I. E., Wheeden R. L., Weighted inequalities for fractional integrals and applications to semilinear equations, J. Funct. Anal. 129 (1995), 221–241. (1995) MR1322649
- Verbitsky I. E., Wheeden R. L., Weighted norm inequalities for integral operators, Trans. Amer. Math. Soc. 350 (1998), 3371–3391. (1998) Zbl0920.42007MR1443202
- Widman K.-O., Inequalities for the Green function and boundary continuity of the gradients of solutions of elliptic differential equations, Math. Scand. 21 (1967), 13–67. (1967) MR0239264
- Zhao Z., Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl. 116 (1986), 309–334. (1986) Zbl0608.35012MR0842803
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.