Global regularity for solutions of the minimal surface equation with continuous boundary values
Annales de l'I.H.P. Analyse non linéaire (1986)
- Volume: 3, Issue: 6, page 411-429
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWilliams, Graham H.. "Global regularity for solutions of the minimal surface equation with continuous boundary values." Annales de l'I.H.P. Analyse non linéaire 3.6 (1986): 411-429. <http://eudml.org/doc/78121>.
@article{Williams1986,
author = {Williams, Graham H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hölder continuity; Dirichlet problem; minimal surface equation; barriers},
language = {eng},
number = {6},
pages = {411-429},
publisher = {Gauthier-Villars},
title = {Global regularity for solutions of the minimal surface equation with continuous boundary values},
url = {http://eudml.org/doc/78121},
volume = {3},
year = {1986},
}
TY - JOUR
AU - Williams, Graham H.
TI - Global regularity for solutions of the minimal surface equation with continuous boundary values
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 6
SP - 411
EP - 429
LA - eng
KW - Hölder continuity; Dirichlet problem; minimal surface equation; barriers
UR - http://eudml.org/doc/78121
ER -
References
top- [GG] M. Giaquinta, E. Giusti, Global C1,α-regularity for second-order quasilinear elliptic equations in divergence form. Preprint. J. Reine Angew. Math., t. 351, 1984, p. 55-65. Zbl0528.35014MR749677
- [GT] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Heidelberg, New York, 1977. Zbl0361.35003MR473443
- [G1] E. Giusti, Superfici cartesiane di are minima. Rend. Sem. Mat. Fis. Milano, t. 40, 1970, p. 135-153. Zbl0219.53008MR291963
- [G2] E. Giusti, Boundary behaviour of non-parametric minimal surfaces. Indiana Univ. Math. J., t. 22, 1972, p. 435-444. Zbl0262.35020MR305253
- [G3] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhaüser-Boston Inc. 1984. Zbl0545.49018MR775682
- [JS] H. Jenkins, J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions. J. Reine Angew. Math., t. 229, 1968, p. 170-187. Zbl0159.40204MR222467
- [L1] G. Lieberman, The quasilinear Dirichlet problem with decreased regularity at the boundary. Comm. Part. Diff. Equats, t. 6, 1981, p. 437-497. Zbl0458.35039MR612553
- [L2] G. Lieberman, The Dirichlet problem for quasilinear elliptic equations with Hölder continuous boundary values. Arch. Rat. Mech. Anal., t. 79, 1982, p. 305-323. Zbl0497.35010MR656797
- [L3] G. Liebermann, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data. Preprint. Comm. Partial Differential Equations, t. 11, 1986, p. 167-229. Zbl0589.35036MR818099
- [L0] G. Lorentz, Approximation of functions. Holt, Rinehart and Winston, New York, 1966. Zbl0153.38901MR213785
- [M] K. Miller, Extremal barriers on cones with Phragmèn-Lindelöf theorems and other applications. Ann. Mat. Pura Appl. (4), t. 90, 1971, p. 297-329. Zbl0231.35004MR316884
- [S1] L. Simon, Global estimates of Hölder continuity for a class of divergence-form elliptic equations. Arch. Rat. Mech. Anal., t. 56, 1974, p. 253-272. Zbl0295.35027MR352696
- [S2] L. Simon, Boundary behaviour of solutions of the nonparametric least area problem. Bull. Austral. Math. Soc., t. 26, 1982, p. 17-27. Zbl0499.49023MR679917
- [S3] L. Simon, Personal communication.
- [W1] G. Williams, Solutions of the minimal surface equation continuous and discontinuous at the boundary. Preprint. To appear. Comm. Partial Differential Equations. Zbl0605.49030MR862695
- [W2] G. Williams, The Dirichlet problem for the minimal surface equation with Lipschitz continuous boundary data. To appear. J. Reine Angew. Math., t. 354, 1984, p. 123-140. Zbl0541.35033MR767575
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.