Global regularity for solutions of the minimal surface equation with continuous boundary values

Graham H. Williams

Annales de l'I.H.P. Analyse non linéaire (1986)

  • Volume: 3, Issue: 6, page 411-429
  • ISSN: 0294-1449

How to cite

top

Williams, Graham H.. "Global regularity for solutions of the minimal surface equation with continuous boundary values." Annales de l'I.H.P. Analyse non linéaire 3.6 (1986): 411-429. <http://eudml.org/doc/78121>.

@article{Williams1986,
author = {Williams, Graham H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hölder continuity; Dirichlet problem; minimal surface equation; barriers},
language = {eng},
number = {6},
pages = {411-429},
publisher = {Gauthier-Villars},
title = {Global regularity for solutions of the minimal surface equation with continuous boundary values},
url = {http://eudml.org/doc/78121},
volume = {3},
year = {1986},
}

TY - JOUR
AU - Williams, Graham H.
TI - Global regularity for solutions of the minimal surface equation with continuous boundary values
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 6
SP - 411
EP - 429
LA - eng
KW - Hölder continuity; Dirichlet problem; minimal surface equation; barriers
UR - http://eudml.org/doc/78121
ER -

References

top
  1. [GG] M. Giaquinta, E. Giusti, Global C1,α-regularity for second-order quasilinear elliptic equations in divergence form. Preprint. J. Reine Angew. Math., t. 351, 1984, p. 55-65. Zbl0528.35014MR749677
  2. [GT] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Heidelberg, New York, 1977. Zbl0361.35003MR473443
  3. [G1] E. Giusti, Superfici cartesiane di are minima. Rend. Sem. Mat. Fis. Milano, t. 40, 1970, p. 135-153. Zbl0219.53008MR291963
  4. [G2] E. Giusti, Boundary behaviour of non-parametric minimal surfaces. Indiana Univ. Math. J., t. 22, 1972, p. 435-444. Zbl0262.35020MR305253
  5. [G3] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhaüser-Boston Inc. 1984. Zbl0545.49018MR775682
  6. [JS] H. Jenkins, J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions. J. Reine Angew. Math., t. 229, 1968, p. 170-187. Zbl0159.40204MR222467
  7. [L1] G. Lieberman, The quasilinear Dirichlet problem with decreased regularity at the boundary. Comm. Part. Diff. Equats, t. 6, 1981, p. 437-497. Zbl0458.35039MR612553
  8. [L2] G. Lieberman, The Dirichlet problem for quasilinear elliptic equations with Hölder continuous boundary values. Arch. Rat. Mech. Anal., t. 79, 1982, p. 305-323. Zbl0497.35010MR656797
  9. [L3] G. Liebermann, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data. Preprint. Comm. Partial Differential Equations, t. 11, 1986, p. 167-229. Zbl0589.35036MR818099
  10. [L0] G. Lorentz, Approximation of functions. Holt, Rinehart and Winston, New York, 1966. Zbl0153.38901MR213785
  11. [M] K. Miller, Extremal barriers on cones with Phragmèn-Lindelöf theorems and other applications. Ann. Mat. Pura Appl. (4), t. 90, 1971, p. 297-329. Zbl0231.35004MR316884
  12. [S1] L. Simon, Global estimates of Hölder continuity for a class of divergence-form elliptic equations. Arch. Rat. Mech. Anal., t. 56, 1974, p. 253-272. Zbl0295.35027MR352696
  13. [S2] L. Simon, Boundary behaviour of solutions of the nonparametric least area problem. Bull. Austral. Math. Soc., t. 26, 1982, p. 17-27. Zbl0499.49023MR679917
  14. [S3] L. Simon, Personal communication. 
  15. [W1] G. Williams, Solutions of the minimal surface equation continuous and discontinuous at the boundary. Preprint. To appear. Comm. Partial Differential Equations. Zbl0605.49030MR862695
  16. [W2] G. Williams, The Dirichlet problem for the minimal surface equation with Lipschitz continuous boundary data. To appear. J. Reine Angew. Math., t. 354, 1984, p. 123-140. Zbl0541.35033MR767575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.