# Variational approximation for detecting point-like target problems*

Gilles Aubert; Daniele Graziani

ESAIM: Control, Optimisation and Calculus of Variations (2011)

- Volume: 17, Issue: 4, page 909-930
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topAubert, Gilles, and Graziani, Daniele. "Variational approximation for detecting point-like target problems*." ESAIM: Control, Optimisation and Calculus of Variations 17.4 (2011): 909-930. <http://eudml.org/doc/221923>.

@article{Aubert2011,

abstract = {
The aim of this paper is to provide a rigorous variational formulation for
the detection of points in 2-d biological images. To this purpose
we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for
which we prove the Γ-convergence to the initial one.
},

author = {Aubert, Gilles, Graziani, Daniele},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Points detection; biological images; divergence-measure fields; p-capacity; Γ-convergence; point detection; 2-d biological images; -capacity; -convergence},

language = {eng},

month = {11},

number = {4},

pages = {909-930},

publisher = {EDP Sciences},

title = {Variational approximation for detecting point-like target problems*},

url = {http://eudml.org/doc/221923},

volume = {17},

year = {2011},

}

TY - JOUR

AU - Aubert, Gilles

AU - Graziani, Daniele

TI - Variational approximation for detecting point-like target problems*

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2011/11//

PB - EDP Sciences

VL - 17

IS - 4

SP - 909

EP - 930

AB -
The aim of this paper is to provide a rigorous variational formulation for
the detection of points in 2-d biological images. To this purpose
we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for
which we prove the Γ-convergence to the initial one.

LA - eng

KW - Points detection; biological images; divergence-measure fields; p-capacity; Γ-convergence; point detection; 2-d biological images; -capacity; -convergence

UR - http://eudml.org/doc/221923

ER -

## References

top- L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000).
- G. Anzellotti, Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl.135 (1983) 293–318.
- G. Aubert, J. Aujol and L. Blanc-Feraud, Detecting codimension – Two objects in an image with Ginzburg-Landau models. Int. J. Comput. Vis.65 (2005) 29–42.
- G. Bellettini, Variational approximation of functionals with curvatures and related properties. J. Conv. Anal.4 (1997) 91–108.
- G. Bellettini and M. Paolini, Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna (1993).
- F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkäuser, Boston (1994).
- A. Braides, Γ-convergence for beginners. Oxford University Press, New York (2000).
- A. Braides and A. Malchiodi, Curvature theory of boundary phases: the two dimensional case. Interfaces Free Bound.4 (2002) 345–370.
- A. Braides and R. March, Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math.59 (2006) 71–121.
- A. Chambolle and F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensionals bounded open sets. Comm. Partial Diff. Eq.22 (1997) 811–840.
- G.Q. Chen and H. Fried, Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal.147 (1999) 35–51.
- G.Q. Chen and H. Fried, On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Math.32 (2001) 1–33.
- G. Dal Maso, Introduction to Γ-convergence. Birkhäuser, Boston (1993).
- G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741–808.
- E. De Giorgi, Some remarks on Γ-convergence and least square methods, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Birkhäuser, Boston (1991) 135–142.
- E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur.58 (1975) 842–850.
- E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia3 (1979) 63–101.
- L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press (1992).
- D. Graziani, L. Blanc-Feraud and G. Aubert, A formal Γ-convergence approach for the detection of points in 2-D images. SIAM J. Imaging Sci. (to appear).
- J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993).
- L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal.98 (1987) 123–142.
- L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital.14-B (1977) 285–299.
- M. Röger and R. Shätzle, On a modified conjecture of De Giorgi. Math. Zeitschrift254 (2006) 675–714.
- G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble)15 (1965) 180–258.
- W. Ziemer, Weakly Differentiable Functions. Springer-Verlag, New York (1989).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.