Consistency, accuracy and entropy behaviour of remeshed particle methods
ESAIM: Mathematical Modelling and Numerical Analysis (2012)
- Volume: 47, Issue: 1, page 57-81
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- B. Ben Moussa and J.P. Vila, Convergence of SPH methods for scalar nonlinear conservation laws. SIAM J. Numer. Anal.37 (2000) 863–887.
- W. Benz, The Numerical Modelling of Nonlinear Stellar Pulsations, Problems and Prospects, a review, in Smooth Particle Hydrodynamics : NATO ASIS Series (1989) 269–287.
- C. Berthon, Contribution à l’analyse numérique des équations de Navier-Stokes compressibles à deux entropies spécifiques. Application à la turbulence compressible. Ph.D. thesis, Université Paris VI (1998).
- M. Coquerelle and G.-H. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys.227 (2008) 9121–9137.
- G.-H. Cottet and P.D. Koumoutsakos, Vortex methods. Cambridge University Press (2000).
- G.-H. Cottet and A. Magni, TVD remeshing schemes for particle methods. C. R. Acad. Sci. Paris, Ser. I347 (2009) 1367–1372.
- G.-H. Cottet and L. Weynans, Particle methods revisited : a class of high-order finite-difference schemes. C. R. Acad. Sci. Paris, Ser. I343 (2006) 51–56.
- G.-H. Cottet, B. Michaux, S. Ossia and G. Vanderlinden, A comparison of spectral and vortex methods in three-dimensional incompressible flow. J. Comput. Phys.175 (2002) 702–712.
- M.W. Evans and F.H. Harlow, The particle-in-cell method for hydrodynamics calculations. Technical Report, Los Alamos Scientific Laboratory (1956).
- A. Ghoniem and D. Wee, Modified interpolation kernels for treating diffusion and remeshing in vortex methods. J. Comput. Phys.213 (2006) 239–263.
- R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics : theory and application to non-spherical stars. Mon. Not. R. Astron. Soc.181 (1977) 375–389.
- F.H. Harlow, Hydrodynamic problems involving large fluid distorsion. J. Assoc. Comput. Mach.4 (1957) 137–142.
- A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.49 (1983) 357–393.
- T. Hou and P.G. Lefloch, Why non-conservative schemes converge to wrong solutions : error analysis. Math. Comput.62 (1994) 497–530.
- P. Koumoutsakos and S. Hieber. A Lagrangian particle level set method. J. Comput. Phys.210 (2005) 342–367.
- P. Koumoutsakos and A. Leonard, High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech.296 (1995) 1–38.
- N. Lanson and J.P. Vila, Convergence des méthodes particulaires renormalisées pour les systèmes de Friedrichs. C. R. Acad. Sci. Paris, Ser. I349 (2005) 465–470.
- N. Lanson and J.P. Vila, Renormalized meshfree schemes II : convergence for scalar conservation laws. SIAM J. Numer. Anal.46 (2008) 1935–1964.
- R.J. LeVeque, Finite-volume methods for hyperbolic problems. Cambridge University Press (2002).
- A. Magni, Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d’équations de transport. Ph.D. thesis, Université de Grenoble. Available on : (2011). URIhttp://tel.archives-ouvertes.fr/ tel-00623128/fr/
- A. Magni and G.-H. Cottet, Accurate, non-oscillatory, remeshing schemes for particle methods. J. Comput. Phys.231 (2012) 152–172.
- A. Majda and S. Osher, Numerical viscosity and the entropy condition. Commun. Pure Appl. Math.32 (1979) 797–838.
- J.J. Monaghan, Why particle methods work. SIAM J. Sci. Stat. Comput3 (1982) 422–433.
- J.J. Monaghan, Extrapolating B-splines for interpolation. J. Comput. Phys.60 (1985) 253–262.
- J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys.30 (1992) 543–574.
- P. Ploumhans, G.S. Winckelmans, J.K. Salmon, A. Leonard and M.S. Warren, Vortex methods for direct numerical simulation of three-dimensional bluff body flows : application to the sphere at Re = 300, 500, and 1000. J. Comput. Phys.178 (2002) 427–463.
- P. Poncet, Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech.517 (2004) 27–53.
- G.A. Sod, A survey of several finite-difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys.27 (1978) 1–131.
- L. Weynans, Méthode particulaire multi-niveaux pour la dynamique des gaz, application au calcul d’écoulements multifluides. Ph.D. thesis, Université Joseph Fourier. Available on : (2006). URIhttp://tel.archives-ouvertes.fr/tel-00121346/en/