# KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions

Mathematical Modelling of Natural Phenomena (2012)

- Volume: 7, Issue: 2, page 131-145
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topSakhnovich, A.. "KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions." Mathematical Modelling of Natural Phenomena 7.2 (2012): 131-145. <http://eudml.org/doc/222228>.

@article{Sakhnovich2012,

abstract = {The matrix KdV equation with a negative dispersion term is considered in the right upper
quarter–plane. The evolution law is derived for the Weyl function of a corresponding
auxiliary linear system. Using the low energy asymptotics of the Weyl functions, the
unboundedness of solutions is obtained for some classes of the initial–boundary
conditions.},

author = {Sakhnovich, A.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {KdV; initial–boundary value problem; Weyl function; evolution; low–energy asymptotics; blow–up solution; initial-boundary value problem; low-energy asymptotics; blow-up solution},

language = {eng},

month = {2},

number = {2},

pages = {131-145},

publisher = {EDP Sciences},

title = {KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions},

url = {http://eudml.org/doc/222228},

volume = {7},

year = {2012},

}

TY - JOUR

AU - Sakhnovich, A.

TI - KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions

JO - Mathematical Modelling of Natural Phenomena

DA - 2012/2//

PB - EDP Sciences

VL - 7

IS - 2

SP - 131

EP - 145

AB - The matrix KdV equation with a negative dispersion term is considered in the right upper
quarter–plane. The evolution law is derived for the Weyl function of a corresponding
auxiliary linear system. Using the low energy asymptotics of the Weyl functions, the
unboundedness of solutions is obtained for some classes of the initial–boundary
conditions.

LA - eng

KW - KdV; initial–boundary value problem; Weyl function; evolution; low–energy asymptotics; blow–up solution; initial-boundary value problem; low-energy asymptotics; blow-up solution

UR - http://eudml.org/doc/222228

ER -

## References

top- J.L. Bona, A.S. Fokas. Initial-boundary-value problems for linear and integrable nonlinear dispersive equations. Nonlinearity, 21 (2008), T195-T203. Zbl1230.30026
- J.L. Bona, W.G. Pritchard, L.R. Scott. An evaluation of a model equation for water waves. Philos. Trans. R. Soc. Lond., A302 (1981), 458–510. Zbl0497.76023
- J. Bona, R. Winther. The Korteweg–de Vries equation, posed in a quarter–plane. SIAM J. Math. Anal., 14 (1983), 1056–1106. Zbl0529.35069
- R. Carroll, Q. Bu. Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques. Appl. Anal., 41 (1991), 33–51. Zbl0754.35155
- C.K. Chu, L.W. Xiang, Y. Baransky. Solitary waves induced by boundary motion. Commun. Pure Appl. Math., 36 (1983), 495–504. Zbl0534.76034
- S. Clark, F. Gesztesy. Weyl-TitchmarshM-function asymptotics for matrix-valued Schrödinger operators. Proc. Lond. Math. Soc., III. Ser., 82 (2001), 701–724. Zbl1025.34021
- S. Clark, F. Gesztesy, M. Zinchenko. Weyl-Titchmarsh theory and Borg-Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients. Oper. Matrices, 1 (2007), 535–592. Zbl1142.34014
- A.S. Fokas. Integrable nonlinear evolution equations on the half-line. Comm. Math. Phys., 230 (2002), 1–39. Zbl1010.35089
- A.S. Fokas. A unified approach to boundary value problems. CBMS-NSF Regional Conference Ser. in Appl. Math. vol. 78. SIAM, Philadelphia, 2008. Zbl1181.35002
- A.S. Fokas, J. Lenells. Explicit soliton asymptotics for the Korteweg–de Vries equation on the half-line. Nonlinearity, 23 (2010), 937–976. Zbl1211.37084
- G. Freiling, V. Yurko. Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Huntington, N.Y., 2001. Zbl1037.34005
- F. Gesztesy, B. Simon. On local Borg-Marchenko uniqueness results. Commun. Math. Phys., 211 (2000), 273–287. Zbl0985.34077
- F. Gesztesy, B. Simon. A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure. Ann. of Math. (2), 152 (2000), 593–643. Zbl0983.34013
- I. Gohberg, M.A. Kaashoek, A.L. Sakhnovich. Sturm-Liouville systems with rational Weyl functions : explicit formulas and applications. Integr. Equ. Oper. Theory, 30 (1998), 338–377. Zbl0897.34025
- M. Kac, P. van Moerbeke. A complete solution of the periodic Toda problem. Proc. Natl. Acad. Sci. USA, 72 (1975), 2879–2880. Zbl0343.34004
- D.J. Kaup, H. Steudel. Recent results on second harmonic generation. Contemp. Math., 326 (2003), 33–48. Zbl1044.35095
- A. Kostenko, A. Sakhnovich, G. Teschl. Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2011, Art. ID rnr065, 49pp. Zbl1248.34027
- P.C. Sabatier. Elbow scattering and inverse scattering applications to LKdV and KdV. J. Math. Phys., 41 (2000), 414–436. Zbl0989.35116
- P.C. Sabatier. Lax equations scattering and KdV. J. Math. Phys., 44 (2003), 3216–3225. Zbl1062.37091
- P.C. Sabatier. Generalized inverse scattering transform applied to linear partial differential equations. Inverse Probl., 22 (2006), 209–228. Zbl1089.35065
- A.L. Sakhnovich. Dirac type and canonical systems : spectral and Weyl-Titchmarsh fuctions, direct and inverse problems. Inverse Probl., 18 (2002), 331–348. Zbl1009.34079
- A.L. Sakhnovich. Second harmonic generation : Goursat problem on the semi-strip, Weyl functions and explicit solutions. Inverse Probl., 21 (2005), 703–716. Zbl1070.35054
- A.L. Sakhnovich. On the compatibility condition for linear systems and a factorization formula for wave functions. J. Differ. Equations, 252 (2012), 3658–3667. Zbl1232.35032
- A.L. Sakhnovich. Sine-Gordon theory in a semi-strip. Nonlinear Analysis, 75 (2012), 964–974. Zbl1231.35046
- L.A. Sakhnovich. Nonlinear equations and inverse problems on the semi-axis (Russian). Preprint 87.30. Mathematical Institute, Kiev, 1987.
- L.A. Sakhnovich. Evolution of spectral data, and nonlinear equations. Ukrain. Math. J., 40 (1988), 459–461. Zbl0683.35068
- L.A. Sakhnovich. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory Adv. Appl. Ser. vol. 107. Birkhäuser, Basel, 1999. Zbl0918.47003
- B.A. Ton. Initial boundary value problems for the Korteweg-de Vries equation. J. Differ. Equations25 (1977), 288–309. Zbl0372.35070
- P.A. Treharne, A.S. Fokas. The generalized Dirichlet to Neumann map for the KdV equation on the half-line. J. Nonlinear Sci., 18 (2008), 191–217. Zbl1187.35225

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.