Displaying similar documents to “KdV Equation in the Quarter–Plane: Evolution of the Weyl Functions and Unbounded Solutions”

Blow-up of a nonlocal p-Laplacian evolution equation with critical initial energy

Yang Liu, Pengju Lv, Chaojiu Da (2016)

Annales Polonici Mathematici

Similarity:

This paper is concerned with the initial boundary value problem for a nonlocal p-Laplacian evolution equation with critical initial energy. In the framework of the energy method, we construct an unstable set and establish its invariance. Finally, the finite time blow-up of solutions is derived by a combination of the unstable set and the concavity method.

Initial boundary value problems of the Degasperis-Procesi equation

Joachim Escher, Zhaoyang Yin (2008)

Banach Center Publications

Similarity:

We mainly study initial boundary value problems for the Degasperis-Procesi equation on the half line and on a compact interval. By the symmetry of the equation, we can convert these boundary value problems into Cauchy problems on the line and on the circle, respectively. Applying thus known results for the equation on the line and on the circle, we first obtain the local well-posedness of the initial boundary value problems. Then we present some blow-up and global existence results for...

Blow-up of solutions for a viscoelastic equation with nonlinear damping

Yang Zhifeng (2008)

Open Mathematics

Similarity:

The initial boundary value problem for a viscoelastic equation with nonlinear damping in a bounded domain is considered. By modifying the method, which is put forward by Li, Tasi and Vitillaro, we sententiously proved that, under certain conditions, any solution blows up in finite time. The estimates of the life-span of solutions are also given. We generalize some earlier results concerning this equation.

Blow up of mechanical systems with a homogeneous energy.

Ernesto A. Lacomba, John Bryant, Luis Alberto Ibort (1991)

Publicacions Matemàtiques

Similarity:

By using the ideas introduced by McGehee in the study of the singularities in some problems of Celestial Mechanics, we study the singularities at the origin and at the infinity for some classical mechanical systems with homogeneous kinetic and potential energy functions. For these systems the origin and the infinity of the configuration coordinates is usually a singularity or a nullity of the Hamiltonian function and the verctor field. This work generalizes a previous one by the first...

Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

Weyl numbers versus Z-Weyl numbers

Bernd Carl, Andreas Defant, Doris Planer (2014)

Studia Mathematica

Similarity:

Given an infinite-dimensional Banach space Z (substituting the Hilbert space ℓ₂), the s-number sequence of Z-Weyl numbers is generated by the approximation numbers according to the pattern of the classical Weyl numbers. We compare Weyl numbers with Z-Weyl numbers-a problem originally posed by A. Pietsch. We recover a result of Hinrichs and the first author showing that the Weyl numbers are in a sense minimal. This emphasizes the outstanding role of Weyl numbers within the theory of eigenvalue...

Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping

Lorena Bociu, Irena Lasiecka (2008)

Applicationes Mathematicae

Similarity:

We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.

The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation

Juan Luis Vázquez (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.