Bacteriophage Infection Dynamics: Multiple Host Binding Sites
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 6, page 109-134
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Beretta, Y. Kuang. Modeling and analysis of a marine bacteriophage infection. Math. Biosci., 149(1998), 57–76.
- B.J.M. Bohannan and R.E. Lenski. Effect of prey heterogeneity on the response of a model food chain to resource enrichment. The American Nat., 153(1999), 73–82.
- B.J.M. Bohannan and R.E. Lenski. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology Letters, 3(2000), 362–377.
- B.J. Cairns, A.R. Timms, V.A.A. Jansen. I.F. Connerton, R.J.H. Payne, Quantitative models of in vitro bacteriophage-host dynamics and their application to phage therapy. PLOS Pathogens, 5(2009), e1000253.
- A. Campbell. Conditions for existence of bacteriophages. Evolution, 15(1961), 153–165.
- M. Carletti. Mean-square stability of a stochastic model for bacteriophage infection with time delays. Mathematical Biosciences, 210(2007), 395-414.
- J. Carr. Applications of centre manifold theory. Springer-Verlag, New York, 1981.
- P. DeLeenheer and H.L. Smith. Virus dynamics: a global analysis. SIAM J. Appl. Math., 63(2003), 1313–1327.
- M. De Paepe and F. Taddei. Viruses' life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLOS Biol., 4(2006), 1248–1256.
- E. Ellis and M. Delbrück. The growth of bacteriophage. J. of Physiology, 22(1939), 365–384.
- D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81 (1977), No. 25, 2340–2361, 1977.
- Y. Cao, D. Gillespie, L. Petzold. The slow-scale stochastic simulation algorithm. J. Chem. Physics, 122 (2005), 014116.
- P. Grayson, L. Han, T. Winther, R. Phillips. Real-time observations of single bacteriophage lambda DNA ejection in vitro. PNAS, 104 (2007), No. 37, 14652–57.
- B. Levin, F. Stewart, L. Chao, Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage, Amer. Nat., 111 (1977), 3–24.
- R. Lenski and B. Levin. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities, Amer. Nat., 125 (1985), No. 4, 585–602.
- B. Levin, J. Bull. Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Amer. Nat., 147 (1996), 881–898.
- B. Levin, J. Bull. Population and evolutionary dynamics of phage therapy. Nature Reviews Microbiology, 2 (2004), 166–173.
- M. Kretzschmar and F. Adler. Aggregated distributions in models for patchy populations. Theor. Pop. Biol., 43 (1993), 1–30.
- A.P. Krueger. The sorption of bacteriophage by living and dead susceptible bacteria: I. Equilibrium Conditions. J. Gen. Physiol., 14 (1931), 493–516.
- S. Matsuzaki, M. Rashel, J. Uchiyama, S. Sakurai, T. Ujihara, M. Kuroda, M. Ikeuchi, T. Tani, M. Fujieda, H. Wakiguchi, S. Imai, Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11(2005), 211–219.
- M.A. Nowak and R.M. May. Virus dynamics. Oxford University Press, New York, 2000.
- R. Payne, V. Jansen. Understanding bacteriophage therapy as a density-dependent kinetic process. J. Theor. Biol., 208 (2001), 37–48.
- R. Payne and V. Jansen. Pharmacokinetic principles of bacteriophage therapy. Clin. Pharmacokinetics, 42 (2003), No. 4, 315–325.
- A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41 (1999), 3–44.
- H.L. Smith. Models of virulent phage growth with application to phage therapy. SIAM J. Appl. Math., 68 (2008), 1717–1737.
- S.J. Schrag and J.E. Mittler. Host-parasite coexistence: the role of spatial refuges in stabilizing bacteria-phage interactions. Amer. Nat., 148 (1996), 348–377.
- G. Stent. Molecular biology of bacterial viruses. W.H. Freeman and Co., London, 1963.
- H. R. Thieme. Persistence under relaxed point-dissipativity (with applications to an endemic model). SIAM J. Math. Anal., 24 (1993), 407–435.
- H.R. Thieme and J. Yang. On the Complex formation approach in modeling predator prey relations, mating, and sexual disease transmission. Elect. J. Diff. Eqns., 05 (2000), 255–283.
- R. Weld, C. Butts, J. Heinemann. Models of phage growth and their applicability to phage therapy. J. Theor. Biol., 227 (2004), 1–11.
- X.-Q. Zhao. Dynamical systems in population biology. CMS Books in Mathematics, Springer, 2003.