On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation
F. Ben Belgacem; C. Bernardi; A. Blouza; M. Vohralík
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 1, page 21-43
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topBen Belgacem, F., et al. "On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation." Mathematical Modelling of Natural Phenomena 4.1 (2009): 21-43. <http://eudml.org/doc/222317>.
@article{BenBelgacem2009,
abstract = {
The contact between two membranes can be described by a system of variational
inequalities, where the unknowns are the displacements of the membranes and the
action of a membrane on the other one. We first perform the analysis of this
system. We then propose a discretization, where the displacements are
approximated by standard finite elements and the action by a
local postprocessing. Such a discretization admits an equivalent mixed
reformulation. We prove the well-posedness of the discrete problem and establish
optimal a priori error estimates.},
author = {Ben Belgacem, F., Bernardi, C., Blouza, A., Vohralík, M.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {unilateral contact; elastic membranes; variational inequalities; variational inequality; local postprocessing; well-posedness; a priori error estimates},
language = {eng},
month = {1},
number = {1},
pages = {21-43},
publisher = {EDP Sciences},
title = {On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation},
url = {http://eudml.org/doc/222317},
volume = {4},
year = {2009},
}
TY - JOUR
AU - Ben Belgacem, F.
AU - Bernardi, C.
AU - Blouza, A.
AU - Vohralík, M.
TI - On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation
JO - Mathematical Modelling of Natural Phenomena
DA - 2009/1//
PB - EDP Sciences
VL - 4
IS - 1
SP - 21
EP - 43
AB -
The contact between two membranes can be described by a system of variational
inequalities, where the unknowns are the displacements of the membranes and the
action of a membrane on the other one. We first perform the analysis of this
system. We then propose a discretization, where the displacements are
approximated by standard finite elements and the action by a
local postprocessing. Such a discretization admits an equivalent mixed
reformulation. We prove the well-posedness of the discrete problem and establish
optimal a priori error estimates.
LA - eng
KW - unilateral contact; elastic membranes; variational inequalities; variational inequality; local postprocessing; well-posedness; a priori error estimates
UR - http://eudml.org/doc/222317
ER -
References
top- R.E. Bank, D.J. Rose. Some error estimates for the box method. SIAM J. Numer. Anal., 24 (1987), 777–787.
- F. Ben Belgacem, C. Bernardi, A. Blouza, M. Vohralík. A finite element discretization of the contact between two membranes. Math. Model. Numer. Anal. (2009) DOI: . DOI10.1051/m2an:2008041
- C. Bernardi, Y. Maday, F. Rapetti. Discrétisations variationnelles de problèmes aux limites elliptiques. Collection “Mathématiques et Applications" 45, Springer-Verlag, Berlin, 2004.
- H. Brezis, G. Stampacchia. Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France, 96 (1968), 153–180.
- F. Brezzi, W.W. Hager, P.-A. Raviart. Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math., 31 (1978/79), 1–16.
- P.G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics, 2002.
- R.S. Falk. Error estimates for the approximation of a class of variational inequalities. Math. Comput., 28 (1974), 963–971.
- P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.
- J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. In: Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet & J.-L. Lions eds. North-Holland, Amsterdam (1996), pp. 313–485.
- N. Kikuchi, J. T. Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied and Numerical Mathematics, Society for Industrial and Applied Mathematics, 1988.
- J.-L. Lions, G. Stampacchia. Variational inequalities. Comm. Pure and Appl. Math., 20 (1967), 493–519.
- P.-A. Raviart, J.-M. Thomas. A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, Springer, 1977, pp. 292–315.
- L. Slimane, A. Bendali, P. Laborde. Mixed formulations for a class of variational inequalities. Math. Model. Numer. Anal., 38 (2004), 177–201.
- M. Vohralík. A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization. C. R. Math. Acad. Sci. Paris, 346 (2008), 687–690.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.