Segregation of Flowing Blood: Mathematical Description
A. Tokarev; G. Panasenko; F. Ataullakhanov
Mathematical Modelling of Natural Phenomena (2011)
- Volume: 6, Issue: 5, page 281-319
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topTokarev, A., Panasenko, G., and Ataullakhanov, F.. "Segregation of Flowing Blood: Mathematical Description." Mathematical Modelling of Natural Phenomena 6.5 (2011): 281-319. <http://eudml.org/doc/222413>.
@article{Tokarev2011,
abstract = {Blood rheology is completely determined by its major corpuscles which are erythrocytes,
or red blood cells (RBCs). That is why understanding and correct mathematical description
of RBCs behavior in blood is a critical step in modelling the blood dynamics. Various
phenomena provided by RBCs such as aggregation, deformation, shear-induced diffusion and
non-uniform radial distribution affect the passage of blood through the vessels. Hence,
they have to be taken into account while modelling the blood dynamics. Other important
blood corpuscles are platelets, which are crucial for blood clotting. RBCs strongly affect
the platelet transport in blood expelling them to the vessel walls and increasing their
dispersion, which has to be considered in models of clotting. In this article we give a
brief review of basic modern approaches in mathematical description of these phenomena,
discuss their applicability to real flow conditions and propose further pathways for
developing the theory of blood flow. },
author = {Tokarev, A., Panasenko, G., Ataullakhanov, F.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {blood; erythrocytes; platelets; suspension dynamics},
language = {eng},
month = {8},
number = {5},
pages = {281-319},
publisher = {EDP Sciences},
title = {Segregation of Flowing Blood: Mathematical Description},
url = {http://eudml.org/doc/222413},
volume = {6},
year = {2011},
}
TY - JOUR
AU - Tokarev, A.
AU - Panasenko, G.
AU - Ataullakhanov, F.
TI - Segregation of Flowing Blood: Mathematical Description
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/8//
PB - EDP Sciences
VL - 6
IS - 5
SP - 281
EP - 319
AB - Blood rheology is completely determined by its major corpuscles which are erythrocytes,
or red blood cells (RBCs). That is why understanding and correct mathematical description
of RBCs behavior in blood is a critical step in modelling the blood dynamics. Various
phenomena provided by RBCs such as aggregation, deformation, shear-induced diffusion and
non-uniform radial distribution affect the passage of blood through the vessels. Hence,
they have to be taken into account while modelling the blood dynamics. Other important
blood corpuscles are platelets, which are crucial for blood clotting. RBCs strongly affect
the platelet transport in blood expelling them to the vessel walls and increasing their
dispersion, which has to be considered in models of clotting. In this article we give a
brief review of basic modern approaches in mathematical description of these phenomena,
discuss their applicability to real flow conditions and propose further pathways for
developing the theory of blood flow.
LA - eng
KW - blood; erythrocytes; platelets; suspension dynamics
UR - http://eudml.org/doc/222413
ER -
References
top- C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed. The mechanics of the circulation (russian edition). Mir, Moscow, 1981.
- A. M. Chernukh, P. N. Aleksandrov, O. V. Alekseev. Microcirculation. Medicina, Moscow, 1984.
- H. L. Goldsmith, R. Skalak. Hemodynamics. Annual Review of Fluid Mechanics, 7 (1975), 213-247.
- H. L. Goldsmith, V. T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report–Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost., 55 (1986), No. 3, 415-435.
- H. L. Goldsmith. The Microcirculatory Society Eugene M. Landis Award lecture. The microrheology of human blood. Microvasc. Res., 31 (1986), No. 2, 121-142.
- A. S. Popel, P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech., 37 (2005), 43-69.
- H. H. Lipowsky. Microvascular rheology and hemodynamics. Microcirculation, 12 (2005), 5-15.
- G. R. Cokelet. Viscometric, in vitro and in vivo blood viscosity relationships: how are they related? (Poiseuille Award Lecture). Biorheology, 36 (1999), 343-358.
- A. M. Quarteroni, M. Tuveri, A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Computing and Visualization in Science, 2 (2000), 163-197.
- S. Kim, P. K. Ong, O. Yalcin, M. Intaglietta, P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology, 46 (2009), 181-189.
- M. Manjunatha, M. Singh. Digital blood flow analysis from microscopic images of mesenteric microvessel with multiple branching. Clin. Hemorheol. Microcirc., 27 (2002), 91-106.
- M. Manjunatha, S. S. Singh, M. Singh. Blood flow analysis in mesenteric microvascular network by image velocimetry and axial tomography. Microvascular Research, 65 (2003), 49-55.
- A. A. Palmer, W. H. Betts. The axial drift of fresh and acetaldehyde-hardened erythrocytes in 25 mum capillary slits of various lengths. Biorheology, 12 (1975), No. 5, 283-293.
- M. L. Ellsworth, R. N. Pittman. Evaluation of photometric methods for quantifying convective mass transport in microvessels. Am. J. Physiol., 251 (1986), H869-H879.
- A. R. Pries, K. Ley, M. Claassen, P. Gaehtgens. Red Cell Distribution at Microvascular Bifurcations. Microvasc. Res., 38 (1989), 81-101.
- R. H. Phibbs. Distribution of leukocytes in blood flowing through arteries. Am. J. Physiol., 210 (1966), No. 5, 919-925.
- G. J. Tangelder, H. C. Teirlinck, D. W. Slaaf, R. S. Reneman. Distribution of blood platelets flowing in arterioles. Am. J. Physiol., 248 (1985), H318-H323.
- B. Woldhuis, G. J. Tangelder, D. W. Slaaf, R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules. Am. J. Physiol., 262 (1992), H1217-H1223.
- P. A. Aarts, S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis, 8 (1988), No. 6, 819-824.
- H. L. Goldsmith. Red cell motions and wall interactions in tube flow. Fed. Proc., 30 (1971), No. 5, 1578-1590.
- G. Segré, A. Silberberg. Radial particle displacements in poiseuille flow of suspensions. Nature, 189 (1961), 209-210.
- G. Segré, A. Silberberg. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. Journal of Fluid Mechanics, 14 (1962), 115-135.
- G. Segré, A. Silberberg. Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. Journal of Fluid Mechanics, 14 (1962), 136-157.
- D. R. Oliver. Influence of particle rotation on radial migration in the Poiseuille flow of suspensions. Nature, 194 (1962), 1269-1271.
- M. Takano, H. L. Goldsmith, S. G. Mason. The flow of suspensions through tubes VIII. Radial Migration of Particles in Pulsatile Flow. Journal of Colloid and lnterface Science, 27 (1968), No. 2, 253-267.
- L. G. Leal. Particle motions in a viscous fluid. Annu. Rev. Fluid Mech., 12 (1980), 435-476.
- S. K. Wang, N. H. C. Hwang. On transport of suspended particulates in tube flow. Biorheology, 29 (1992), 353-377.
- H. Brenner, P. M. Bungay. Rigid-particle and liquid-droplet models of red cell motion in capillary tubes. Fed. Proc., 30 (1971), No. 5, 1565-1577.
- H. L. Goldsmith, S. G. Mason. The flow of suspensions through tubes I. Single spheres, rods and discs. Journal of Colloid Science, 17 (1962), 448-476.
- C. K. W. Tam, W. A. Hyman. Transverse motion of an elastic sphere in a shear field. Journal of Fluid Mechanics, 59 (1973), No. part 1, 177-185.
- C. Crowe, M. Sommerfield, Y. Tsuji. Multiphase flows with drops and particles. CRC Press, 1998.
- P. Cherukat, J. B. McLaughlin, D. S. Dandy. A computational study of the inertial lift on a sphere in a linear shear fow field. International Journal of Multiphase Flow, 25 (1999), 15-33.
- J.-P. Matas, J. F. Morris, E. Guazzelli. Inertial migration of rigid spherical particles in Poiseuille flow. Journal of Fluid Mechanics, 515 (2004), 171-195.
- L. L. Munn, M. M. Dupin. Blood cell interactions and segregation in flow. Ann. Biomed. Eng, 36 (2008), No. 4, 534-544.
- E. E. Michaelides. Hydrodynamic Force and Heat-Mass Transfer From Particles. Journal of Fluids Engineering, 125 (2003), 209-238.
- S. I. Rubinow, J. B. Keller. The transverse force on a spinning sphere moving in a viscous fluid. Journal of Fluid Mechanics, 11 (1961), 447-459.
- R. G. Cox, H. Brenner. The lateral migration of solid particles in Poiseuille flow - I theory. Chemical Engineering Science, 23 (1968), 147-173.
- P. G. Saffman. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 22 (1965), No. part 2, 385-400.
- J. B. McLaughlin. Inertial migration of a small sphere in linear shear flows. Journal of Fluid Mechanics, 224 (1991), 261-274.
- P. Cherukat, J. B. McLaughlin, A. L. Graham. The inertial lift on a rigid sphere translating in a linear shear flow field. International Journal of Multiphase Flow, 20 (1994), No. 2, 339-353.
- P. V. Vasseur, R. G. Cox. The lateral migration of a spherical particle in two-dimensional shear flows. Journal of Fluid Mechanics, 78 (1976), 385-413.
- R. G. Cox, S. K. Hsu. The lateral migration of solid particles in a laminar flow near a plane. International Journal of Multiphase Flow, 3 (1977), 201-222.
- P. Cherukat, D. R. Oliver. The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. Journal of Fluid Mechanics, 263 (1994), 1-18.
- P. W. Longest, C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel fow domains. Journal of Biomechanics, 36 (2003), 421-430.
- P. W. Longest, C. Kleinstreuer. Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses. Journal of Biomechanical Engineering, 125 (2003), 671-681.
- P. W. Longest, C. Kleinstreuer, J. R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Computers & Fluids, 33 (2004), 577-601.
- H. L. Goldsmith, S. G. Mason. Axial migration of particles in Poiseuille Flow. Nature, 190 (1961), 1095-1096.
- M. Abkarian, A. Viallat. Vesicles and red blood cells in shear flow. Soft Matter, 4 (2008), 653-657.
- C. Coulliette, C. Pozrikidis. Motion of an array of drops through a cylindrical tube. Journal of Fluid Mechanics, 358 (1998), 1-28.
- S. Mortazavi, G. Tryggvason. A numerical study of the motion of drops in Poiseuille flow. Part 1.Lateral migration of one drop. Journal of Fluid Mechanics, 411 (2000), 325-350.
- C. Pozrikidis. Numerical Simulation of Cell Motion in Tube Flow. Ann. Biomed. Eng, 33 (2005), No. 2, 165-178.
- B. Kaoui, G. Biros, C. Masbah. Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow? Physical Review Letters, 103 (2009), No. 18, 188101(1)-188101(4).
- C. E. Chaffey, H. Brenner, S. G. Mason. Particle motions in sheared suspensions XVIII. Wall Migration (Theoretical). Rheologica Acta, 4 (1965), No. 1, 64-72.
- C. E. Chaffey, H. Brenner, S. G. Mason. Correction of the paper Particle motions in sheared suspensions XVIII. Wall Migration (Theoretical). Rheologica Acta, 6 (1967), No. 1, 100.
- P. R. Wohl, S. I. Rubinow. The transverse force on a drop in an unbounded parabolic flow. Journal of Fluid Mechanics, 62 (1974), No. part 1, 185-207.
- P. C. H. Chan, L. G. Leal. The motion of a deformable drop in a second-order fluid. Journal of Fluid Mechanics, 92 (1979), No. part 1, 131-170.
- W. S. J. Uijttewaal, E.-J. Nijhof, R. M. Heethaar. Droplet migration, deformation, and orientation in the presence of a plane wall: A numerical study compared with analytical theories. Phys. Fluids A, 5 (1993), No. 4, 819-825.
- S. D. Hudson. Wall migration and shear-induced diffusion of fluid droplets in emulsions. Physics of Fluids, 15 (2003), No. 5, 1106-1113.
- M. R. King, D. T. Leighton, Jr.Measurement of shear-induced dispersion in a dilute emulsion. Physics of Fluids, 13 (2001), No. 2, 397-406.
- M. Scott. 2005. The modeling of Blood Rheology in small vessels. University of Waterloo, Waterloo, Ontario, Canada.
- P. Olla. The lift on a tank-treading ellipsoidal cell in a shear flow. Journal de Physique II, 7 (1997), No. 10, 1533-1540.
- M. Faivre, M. Abkarian, K. Bickraj, H. A. Stone. Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma. Biorheology, 43 (2006), 147-159.
- P. L. Blackshear, Jr., R. J. Forstrom, F. D. Dorman, G. O. Voss. Effect of flow on cells near walls. Fed. Proc., 30 (1971), No. 5, 1600-1609.
- C. D. Eggleton, A. S. Popel. Large deformation of red blood cell ghosts in a simple shear flow. Physics of Fluids, 10 (1998), No. 8, 1834-1845.
- N. Korin, A. Bransky, U. Dinnar. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels. Journal of Biomechanics, 40 (2007), 2088-2095.
- P. R. Nott, J. F. Brady. Pressure-driven flow of suspensions: simulation and theory. Journal of Fluid Mechanics, 275 (1994), 157-199.
- J. F. Morris, J. F. Brady. Pressure-driven flow in a suspension: buoyancy effects. International Journal of Multiphase Flow, 24 (1998), No. 1, 105-130.
- K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi. A Particle Method for Blood Flow Simulation -Application to Flowing Red Blood Cells and Platelets. Journal of the Earth Simulator, 5 (2006), 2-7.
- S. Chen, G. D. Doolen. Lattice Boltzmann Method for Fluid Flows. Annu. Rev. Fluid Mech., 30 (1998), 329-364.
- M. M. Dupin, I. Halliday, C. M. Care, L. Alboul, L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E., 066707 (2007), 1-17.
- L. M. Crowl, A. L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Commun. Numer. Meth. Engng, (2009).
- C. Sun, C. Migliorini, L. L. Munn. Red Blood Cells Initiate Leukocyte Rolling in Postcapillary Expansions: A Lattice Boltzmann Analysis. Biophysical Journal, 85 (2003), 208-222.
- P. Bagchi. Mesoscale Simulation of Blood Flow in Small Vessels. Biophysical Journal, 92 (2007), 1858-1877.
- P. Bagchi, P. C. Johnson, A. S. Popel. Computational Fluid Dynamic Simulation of Aggregation of Deformable Cells in a Shear Flow. Transactions of the ASME, 127 (2005), 1070-1080.
- J. Zhang, P. C. Johnson, A. S. Popel. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. Journal of Biomechanics, 41 (2008), 47-55.
- J. Zhang, P. C. Johnson, A. S. Popel. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc. Res., 77 (2009), 265-272.
- S. Svetina, P. Ziherl. Morphology of small aggregates of red blood cells. Bioelectrochemistry, 73 (2008), No. 2, 84-91.
- A. L. Fogelson. A Mathematical Model and Numerical Method for Studying Platelet Adhesion and Aggregation during Blood Clotting. Journal of Computational Physics, 56 (1984), 111-134.
- I. V. Pivkin, P. D. Richardson, G. Karniadakis. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. PNAS, 103 (2006), No. 46, 17164-17169.
- H. Miyazaki, T. Yamaguchi. Formation and destruction of primary thrombi under the influence of blood flow and von Willebrand factor analyzed by a discrete element method. Biorheology, 40 (2003), 265-272.
- K. Yano, K. Tsubota, S. Wada, T. Yamaguchi. 2003. Computational mechanical simulation of the aggregation and adhesion of platelets in the blood flow. In Summer Bioengineering Conference. Sonesta Beach Resort in Key Biscayne, Florida. 0613-0614.
- N. Filipovic, D. Ravnic, M. Kojic, S. J. Mentzer, S. Haber, A. Tsuda. Interactions of blood cell constituents: Experimental investigation and computational modeling by discrete particle dynamics algorithm. Microvasc. Res., 75 (2008), 279-284.
- D. Mori, K. Yano, K. Tsubota, T. Ishikawa, S. Wada, T. Yamaguchi. Simulation of platelet adhesion and aggregation regulated by fibrinogen and von Willebrand factor. Thromb. Haemost., 99 (2008), No. 1, 108-115.
- T. Almomani, H. S. Udaykumar, J. S. Marshall, K. B. Chandran. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow. Ann. Biomed. Eng, 36 (2008), No. 6, 905-920.
- R. M. Miller, J. F. Morris. Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. Journal of Non-Newtonian Fluid Mechanics, 135 (2006), 149-165.
- L. G. Loitzanskii. Mechanics of Fluid and Gas. Nauka, Moscow, 1978.
- A. Sequeira, J. Janela. An overview of some mathematical models of blood rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon. M. S. Pereira, editor. Springer, 2007. pp. 65-87.
- A. M. Robertson, A. Sequeira, M. V. Kameneva. Hemorheology. In Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars). Birkhauser Basel, 2008. pp. 63-120.
- G. R. Cokelet. The Rheology and Tube Flow of Blood. In Handbook of Bioengineering. R. Skalak, S. Chen, editors. McGraw-Hill, New York, 1987.
- B. J. B. M. Wolters, M. C. M. Rutten, G. W. H. Schurink, U. Kose, J. d. Hart, F. N. v. d. Vosse. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms. Medical Engineering & Physics, 27 (2005), 871-883.
- J. Jung, A. Hassenein, R. W. Lyczkowski. Hemodynamic Computation Using Multiphase Flow Dynamics in a Right Coronary Artery. Ann. Biomed. Eng, 34 (2006), No. 3, 393-407.
- J. Jung, R. W. Lyczkowski, C. B. Panchal, A. Hassenein. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. Journal of Biomechanics, 39 (2006), 2064-2073.
- J. Jung, A. Hassenein. Three-phase CFD analytical modeling of blood flow. Medical Engineering & Physics, 30 (2008), 91-103.
- D. Quemada, C. Berli. Energy of interaction in colloids and its implications in rheological modeling. Advances in Colloid and Interface Science, 98 (2002), 51-85.
- A. Marcinkowska-Gapinska, J. Gapinski, W. Elikowski, F. Jaroszyk, L. Kubisz. Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients. Medical and Biological Engineering and Computing, 45 (2007), No. 9, 837-844.
- B. Das, P. C. Johnson, A. S. Popel. Effect of nonaxisimmetric hematoctit distribution on non-newtonian blood flow in small tubes. Biorheology, 35 (1998), No. 1, 69-87.
- J. R. Buchanan, Jr., C. Kleinstreuer, J. K. Comer. Rheological effects on pulsatile hemodynamics in a stenosed tube. Computers & Fluids, 29 (2000), 695-724.
- B. Das, G. Enden, A. S. Popel. Stratified multiphase model for blood flow in a venular bifurcation. Annals of Biomedical Engineering, 25 (1997), 135-153.
- A. S. Popel, G. Enden. An analytical solution for steady flow of a Quemada fluid in a circular tube. Rheologica Acta, 32 (1993), 422-426.
- C. L. Berli, D. Quemada. Aggregation behavior of red blood cells in shear flow. A theoretical interpretation of simultaneous rheo-optical and viscometric measurements. Biorheology, 38 (2001), No. 1, 27-38.
- D. Quemada. Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited. The European Physical J. AP, 1 (1998), 119-127.
- D. Quemada, C. Berli. Energy of interaction in colloids and its implications in rheological modeling. Adv. Colloid Interface Sci., 98 (2002), No. 1, 51-85.
- P. Neofytou. Comparison of blood rheological models for physiological flow simulation. Biorheology, 41 (2004), No. 6, 693-714.
- G. R. Cokelet, H. L. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ. Res., 68 (1991), No. 1, 1-17.
- J. R. Buchanan, Jr., C. Kleinstreuer. Simulation of particle-hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses. J. Biomech. Eng, 120 (1998), No. 4, 446-454.
- S. A. Regirer. Lections on Biological Mechanics [in russian]. Izdatelstvo MGU, Moscow, 1980.
- M. Sharan, A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology, 38 (2001), 415-428.
- J. H. Ware, F. Y. Sorrell, R. M. Felder. A model of steady blood flow. Biorheology, 11 (1974), 97-109.
- B. Das, P. C. Johnson, A. S. Popel. Computational fluid dynamic studies of leukocyte adhesion effects. Biorheology, 37 (2000), 239-258.
- J. Perkkio, R. Keskinen. On the effect of the concentration profile of red cells on blood flow in the artery with stenosis. Bull. Math. Biol., 45 (1983), No. 2, 259-267.
- D. Lerche. Modelling hemodynamics in small tubes (hollow fibers) considering . In Biomechanical Transport Processes. F. e. al. Mosora, editor. Plenum, New York, 1990. pp. 243-250.
- R. T. Carr, M. Lacoin. Nonlinear Dynamics of Microvascular Blood Flow. Annals of Biomedical Engineering, 28 (2000), 641-652.
- P. Brunn. The general solution to the equations of creeping motion of a micropolar fluid and its application. International Journal of Engineering Science, 20 (1982), 575-585.
- V. K. Stokes. Couple stress in fluids. The Physics of Fluids, 9 (1966), No. 9, 1709-1715.
- A. C. Eringen. Theory of Micropolar Fluids. Journal of Mathematics and Mechanics, 16 (1966), No. 1, 1-18.
- A. Askar, A. S. Cakmak. A structural model of a micropolar continuum. International Journal of Engineering Science, 6 (1968), 583-589.
- T. Ariman. Microcontinuum fluid mechanics - a review. International Journal of Engineering Science, 11 (1973), 905-930.
- T. Ariman, M. A. Turk, N. D. Sylvester. Application of microcontinuum fluid mechanics. International Journal of Engineering Science, 12 (1974), 273-293.
- K. A. Kline. Predictions from Polar Fluid Theory Which Are Independent of Spin Boundary Condition. Transactions of the society of rheology, 19 (1975), No. 1, 139-145.
- S. C. Cowin. A Note on the Predictions from Polar Fluid Theory Which Are Independent of the Spin Boundary Condition. Transactions of the society of rheology, 20 (1976), No. 2, 195-202.
- H. A. Hogan, M. Henriksen. An evaluation of a micropolar model for blood flow through an idealized stenosis. Journal of Biomechanics, 22 (1989), No. 3, 211-218.
- R. N. Pralhad, D. H. Schultz. Modeling of arterial stenosis and its applications to blood diseases. Mathematical Biosciences, 190 (2004), 203-220.
- G. Akay, A. Kaye. Numerical solution of time dependent stratified two-phase flow of micropolar fluids and its application to flow of blood through fine capillaries. International Journal of Engineering Science, 23 (1985), No. 3, 265-276.
- Md. A. Ikbal, S. Chakravarty, P. K. Mandal. Two-layered micropolar fluid flow through stenosed artery: Effect of peripheral layer thickness. Computers and Mathematics with Applications, 58 (2009), 1328-1339.
- D. Biswas. Blood Flow Models: A Comparative Study. Mittal Publications , 2002.
- C. K. Kang, A. C. Eringen. The effect of microstructure on the rheological properties of blood. Bull. Math. Biol., 38 (1976), 135-159.
- A. S. Popel, S. A. Regirer. Ob osnovnih uravneniyah hydrodinamiki krovi. Nauchnie trudi instituta mechaniki MGU, 1 (1970), 3-20.
- A. S. Popel, S. A. Regirer, P. I. Usick. A Continuum Model of Blood Flow. Biorheology, 11 (1974), 427-437.
- A. S. Popel. O hydrodynamike suspensii. Mechanika zjidkosti i gaza, 4 (1969), 24.
- A. C. Eringen. Microcontinuum Field Theories II: Fluent media. Springer-Verlag, 2001.
- V. A. Levtov, S. A. Regirer, N. Kh. Shadrina. Aggregation and diffusion of Erythrocites. Sovremennie problemi biomekhaniki, 9 (1994), 5-41.
- V. L. Kolpashchikov, N. P. Migun, P. P. Prokhorenko. Experimental determination of material micropolar fluid constants. International Journal of Engineering Science, 21 (1983), No. 4, 405-411.
- A. D. J. Kirwan. Boundary conditions for micropolar fluids. International Journal of Engineering Science, 24 (1986), No. 7, 1237-1242.
- H. L. Goldsmith, J. C. Marlow. Flow Behavior of Erythrocytes II. Particle Motions in Concentrated Suspensions of Ghost Cells. Journal of Colloid and lnterface Science, 71 (1979), No. 2, 383-407.
- V. A. Levtov, S. A. Regirer, N. Kh. Shadrina. Rheology of Blood. Medicina, Moscow, 1982.
- G. Ahmadi. A continuum theory of blood flow. Scientia Sinica, 24 (1981), No. 10, 1465-1473.
- G. Ahmadi. A Continuum Theory for Two Phase Media. Acta Mechanica, 44 (1982), 299-317.
- J. Jung, D. Gidaspow, I. K. Gamwo. Bubble Computation, Granular Temperatures, and Reynolds Stresses. Chem. Eng. Comm., 193 (2006), 946-975.
- E. C. Eckstein, D. G. Bailey, A. H. Shapiro. Self-diffusion of particles in shear flow of a suspension. Journal of Fluid Mechanics, 79 (1977), No. part 1, 191-208.
- D. Leighton, A. Acrivos. The shear-induced migration of particles in concentrated suspensions. Journal of Fluid Mechanics, 181 (1987), 415-439.
- H. Aref, S. W. Jones. Enhanced separation of diffusing particles by chaotic advection. Phys. Fluids A, 1 (1989), No. 3, 470-474.
- C. J. Koh, P. Hookham, L. G. Leal. An experimental investigation of concentrated suspension flows in a rectangular channel. Journal of Fluid Mechanics, 266 (1994), 1-32.
- M. K. Lyon, L. G. Leal. An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. Journal of Fluid Mechanics, 363 (1998), 25-56.
- R. J. Phillips, R. C. Armstrong, R. A. Brown. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A, 4 (1992), No. 1, 30-40.
- J. E. Butler, R. T. Bonnecaze. Imaging of particle shear migration with electrical impedance tomography. Physics of Fluids, 11 (1999), No. 8, 1982-1994.
- M. Hofer, K. Perctold. Computer simulation of concentrated fluid-perticle suspension flows in axisimmetric geometries. Biorheology, 54 (1997), No. 4/5, 261-279.
- M. K. Lyon, L. G. Leal. An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 2. Bidisperse systems. Journal of Fluid Mechanics, 363 (1998), 57-77.
- J. F. Morris, F. Boulay. Curvilinear flows of noncolloidal suspensions: The role of normal stresses. Journal of Rheology, 43 (1999), No. 5, 1213-1236.
- E. F. Grabowski, Friedman L.I., E. F. Leonard. Effects of Shear Rate on the Diffusion and Adhesion of Blood Platelets to a Foreign Surface. Ind. Eng. Chem. Fundamen., 11 (1972), No. 2, 224-232.
- A. B. Strong, G. D. Stubley, G. Chang, D. R. Absolom. Theoretical and experimental analysis of cellular adhesion to polymer surfaces. J. Biomed. Mater. Res., 21 (1987), No. 8, 1039-1055.
- G. D. Stubley, A. B. Strong, W. E. Hale, D. R. Absolom. A review of mathematical models for the prediction of blood cell adhesion. PCH PhysicoChem. Hydrodynics, 8 (1987), No. 2, 221-235.
- D. M. Wootton, C. P. Markou, S. R. Hanson, D. N. Ku. A mechanistic model of acute platelet accumulation in thrombogenic stenoses. Ann. Biomed. Eng, 29 (2001), No. 4, 321-329.
- E. N. Sorensen, G. W. Burgreen, W. R. Wagner, J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng, 27 (1999), No. 4, 449-458.
- E. N. Sorensen, G. W. Burgreen, W. R. Wagner, J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng, 27 (1999), No. 4, 436-448.
- T. David, P. G. Walker. Activation and extinction models for platelet adhesion. Biorheology, 39 (2002), 293-298.
- M. Anand, K. Rajagopal, K. R. Rajagopal. A Model Incorporating some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood. Computational and Mathematical Methods in Medicine, 5 (2003), No. 3&4, 183-218.
- A. L. Fogelson, R. D. Guy. Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution. Math. Med. Biol., 21 (2004), No. 4, 293-334.
- N.-T. Wang, A. L. Fogelson. Computational methods for continuum models of platelet aggregation. Journal of Computational Physics, 151 (1999), 649-675.
- A. L. Fogelson. Continuum models of platelet aggregation: formulation and mechanical properties. SIAM J. Appl. Math., 52 (1992), No. 4, 1089-1110.
- A. Jordan, T. David, S. Homer-Vanniasinkam, A. Graham, P. Walker. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow. Biorheology, 41 (2004), 641-653.
- E. C. Eckstein, D. L. Bilsker, C. M. Waters, J. S. Kippenhan, A. W. Tilles. Transport of platelets in flowing blood. Ann. N. Y. Acad. Sci., 516 (1987), 442-452.
- E. C. Eckstein, F. Belgacem. Model of platelet transport in flowing blood with drift and diffusion terms. Biophys. J., 60 (1991), No. 1, 53-69.
- C. Yeh, A. C. Calvez, E. C. Eckstein. An estimated shape function for drift in a platelet-transport model. Biophys. J., 67 (1994), No. 3, 1252-1259.
- A. L. Zydney, C. K. Colton. Augmented solute transport in the shear flow of a concentrated suspension. PCH PhysicoChem. Hydrodynamics, 10 (1988), No. 1, 77-96.
- S. N. Antontsev, A. V. Kazhikhov, V. N. Monakov. Boundary Value Problems in the Mechanics of Heterogeneous Fluids, Novosibirsk, Nauka, 1983.
- J. Málek, J. Nečas, M. Pokyta, M. Ruzička. Weak and Measure-valued Solutions to Evolutionary DPEs. Chapman and Hall, London, 1996.
- G. P. Galdi, R. Rannacher, A. H. Robertson, S. Turek. Hemodynamical Flows Modeling: Analysis and Simulation. Oberwolfach Seminar, Birkhauser, Basel, Boston, Berlin, 2008.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.