α-time fractional Brownian motion: PDE connections and local times∗
Erkan Nane; Dongsheng Wu; Yimin Xiao
ESAIM: Probability and Statistics (2012)
- Volume: 16, page 1-24
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topNane, Erkan, Wu, Dongsheng, and Xiao, Yimin. "α-time fractional Brownian motion: PDE connections and local times∗." ESAIM: Probability and Statistics 16 (2012): 1-24. <http://eudml.org/doc/222484>.
@article{Nane2012,
abstract = {For 0 < α ≤ 2 and 0 < H < 1, an
α-time fractional Brownian motion is an iterated process
Z = \{Z(t) = W(Y(t)), t ≥ 0\}
obtained by taking a fractional Brownian motion
\{W(t), t ∈ ℝ\} with Hurst index
0 < H < 1 and replacing the time parameter with a
strictly α-stable Lévy process \{Y(t), t ≥ 0\} in ℝ independent of \{W(t), t ∈ R\}. It is shown that such
processes have natural connections to partial differential equations and, when
Y is a stable subordinator, can arise as scaling limit of randomly
indexed random walks. The existence, joint continuity and sharp Hölder conditions in the
set variable of the local times of a d-dimensional
α-time fractional Brownian motion
X = \{X(t), t ∈ ℝ+\} defined by X(t) = (X1(t), ..., Xd(t)),
where t ≥ 0 and
X1, ..., Xd
are independent copies of Z, are investigated. Our methods rely on the
strong local nondeterminism of fractional Brownian motion. },
author = {Nane, Erkan, Wu, Dongsheng, Xiao, Yimin},
journal = {ESAIM: Probability and Statistics},
keywords = {Fractional Brownian motion; strictlyα-stable Lévy process; α-time Brownian motion; α-time fractional Brownian motion; partial differential equation; local time; Hölder condition.; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE; Hölder condition},
language = {eng},
month = {3},
pages = {1-24},
publisher = {EDP Sciences},
title = {α-time fractional Brownian motion: PDE connections and local times∗},
url = {http://eudml.org/doc/222484},
volume = {16},
year = {2012},
}
TY - JOUR
AU - Nane, Erkan
AU - Wu, Dongsheng
AU - Xiao, Yimin
TI - α-time fractional Brownian motion: PDE connections and local times∗
JO - ESAIM: Probability and Statistics
DA - 2012/3//
PB - EDP Sciences
VL - 16
SP - 1
EP - 24
AB - For 0 < α ≤ 2 and 0 < H < 1, an
α-time fractional Brownian motion is an iterated process
Z = {Z(t) = W(Y(t)), t ≥ 0}
obtained by taking a fractional Brownian motion
{W(t), t ∈ ℝ} with Hurst index
0 < H < 1 and replacing the time parameter with a
strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such
processes have natural connections to partial differential equations and, when
Y is a stable subordinator, can arise as scaling limit of randomly
indexed random walks. The existence, joint continuity and sharp Hölder conditions in the
set variable of the local times of a d-dimensional
α-time fractional Brownian motion
X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)),
where t ≥ 0 and
X1, ..., Xd
are independent copies of Z, are investigated. Our methods rely on the
strong local nondeterminism of fractional Brownian motion.
LA - eng
KW - Fractional Brownian motion; strictlyα-stable Lévy process; α-time Brownian motion; α-time fractional Brownian motion; partial differential equation; local time; Hölder condition.; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE; Hölder condition
UR - http://eudml.org/doc/222484
ER -
References
top- R.J. Adler, The Geometry of Random Fields. Wiley, New York (1981).
- H. Allouba and W. Zheng, Brownian-time processes : the pde connection and the half-derivative generator. Ann. Probab.29 (2001) 1780–1795.
- F. Aurzada and M. Lifshits, On the Small deviation problem for some iterated processes. Electron. J. Probab.14 (2009) 1992–2010.
- B. Baeumer, M.M. Meerschaert and E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc.361 (2009) 3915–3930.
- B. Baeumer, M.M. Meerschaert and E. Nane, Space-time duality for fractional diffusion. J. Appl. Probab.46 (2009) 1100–1115.
- L. Beghin, L. Sakhno and E. Orsingher, Equations of Mathematical Physics and composition of Brownian and Cauchy processes. Stoch. Anal. Appl.29 (2011) 551–569.
- S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc.137 (1969) 277–299.
- S.M. Berman, Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J.23 (1973) 69–94.
- J. Bertoin, Lévy Processes. Cambridge University Press (1996).
- K. Burdzy, Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, edited by E.Çinlar, K.L. Chung and M.J. Sharpe. Birkhäuser, Boston (1993) 67–87.
- K. Burdzy and D. Khoshnevisan, The level set of iterated Brownian motion, Séminaire de Probabilités XXIX, edited by J. Azéma, M. Emery, P.-A. Meyer and M. Yor. Lect. Notes Math.1613 (1995) 231–236.
- K. Burdzy and D. Khoshnevisan, Brownian motion in a Brownian crack. Ann. Appl. Probab.8 (1998) 708–748.
- E. Csáki, M. Csörgö, A. Földes and P. Révész, The local time of iterated Brownian motion. J. Theoret. Probab.9 (1996) 717–743.
- J. Cuzick and J. DuPreez, Joint continuity of Gaussian local times. Ann. Probab.10 (1982) 810–817.
- Y. Davydov, The invariance principle for stationary processes. Teor. Verojatnost. i Primenen.15 (1970) 498–509.
- R.D. DeBlassie, Higher order PDE’s and symmetric stable processes. Probab. Theory Relat. Fields129 (2004) 495–536.
- R.D. DeBlassie, Iterated Brownian motion in an open set. Ann. Appl. Probab.14 (2004) 1529–1558.
- M. D’Ovidio and E. Orsingher, Composition of processes and related partial differential equations. J. Theor. Probab.24 (2011) 342–375.
- W. Ehm, Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw. Geb.56 (1981) 195–228.
- P. Embrechts and M. Maejima, Selfsimilar Processes. Princeton University Press, Princeton (2002).
- D. Geman and J. Horowitz, Occupation densities. Ann. Probab.8 (1980) 1–67.
- M. Hahn, K. Kobayashi and S. Umarov, Fokker-Plank-Kolmogorv equations associated with SDEs driven by time-changed fractional Brownian motion. Proc. Amer. Math. Soc.139 (2011) 691–705.
- Y. Hu, Hausdorff and packing measures of the level sets of iterated Brownian motion. J. Theoret. Probab.12 (1999) 313–346.
- J.P. Kahane, Some Random Series of Functions, 2nd edition. Cambridge University Press (1985).
- D. Khoshnevisan and Y. Xiao, Images of the Brownian sheet. Trans. Amer. Math. Soc.359 (2007) 3125–3151.
- M.A. Lifshits, Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995).
- W. Linde and Z. Shi, Evaluating the small deviation probabilities for subordinated Lévy processes. Stoch. Process. Appl.113 (2004) 273–287.
- E. Nane, Iterated Brownian motion in parabola-shaped domains. Potential Anal.24 (2006) 105–123.
- E. Nane, Iterated Brownian motion in bounded domains in ℝn. Stoch. Process. Appl.116 (2006) 905–916.
- E. Nane, Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab.11 (2006) 434–459.
- E. Nane, Higher order PDE’s and iterated processes. Trans. Amer. Math. Soc.360 (2008) 2681–2692.
- E. Nane, Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett.79 (2009) 1744–1751.
- E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab.37 (2009) 206–249.
- L.D. Pitt, Local times for Gaussian vector fields. Indiana Univ. Math. J.27 (1978) 309–330.
- G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes : Stochastic models with infinite variance. Chapman & Hall, New York (1994).
- K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999).
- A.V. Skorokhod, Asymptotic formulas for stable distribution laws. Selected Translations in Mathematical Statistics and Probability1 (1961) 157–162; Dokl. Akad. Nauk. SSSR98 (1954) 731–734.
- M. Talagrand, Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab.23 (1995) 767–775.
- M. Talagrand, Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields112 (1998) 545–563.
- M.S. Taqqu, Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete31 (1975) 287–302.
- S.J. Taylor, Sample path properties of a transient stable process. J. Math. Mech.16 (1967) 1229–1246.
- W. Whitt, Stochastic-Process Limits. Springer, New York (2002).
- Y. Xiao, Hölder conditions for the local times and Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields109 (1997) 129–157.
- Y. Xiao, Local times and related properties of multi-dimensional iterated Brownian motion. J. Theoret. Probab.11 (1998) 383–408.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.