# α-time fractional Brownian motion: PDE connections and local times∗

Erkan Nane; Dongsheng Wu; Yimin Xiao

ESAIM: Probability and Statistics (2012)

- Volume: 16, page 1-24
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topNane, Erkan, Wu, Dongsheng, and Xiao, Yimin. "α-time fractional Brownian motion: PDE connections and local times∗." ESAIM: Probability and Statistics 16 (2012): 1-24. <http://eudml.org/doc/222484>.

@article{Nane2012,

abstract = {For 0 < α ≤ 2 and 0 < H < 1, an
α-time fractional Brownian motion is an iterated process
Z = \{Z(t) = W(Y(t)), t ≥ 0\}
obtained by taking a fractional Brownian motion
\{W(t), t ∈ ℝ\} with Hurst index
0 < H < 1 and replacing the time parameter with a
strictly α-stable Lévy process \{Y(t), t ≥ 0\} in ℝ independent of \{W(t), t ∈ R\}. It is shown that such
processes have natural connections to partial differential equations and, when
Y is a stable subordinator, can arise as scaling limit of randomly
indexed random walks. The existence, joint continuity and sharp Hölder conditions in the
set variable of the local times of a d-dimensional
α-time fractional Brownian motion
X = \{X(t), t ∈ ℝ+\} defined by X(t) = (X1(t), ..., Xd(t)),
where t ≥ 0 and
X1, ..., Xd
are independent copies of Z, are investigated. Our methods rely on the
strong local nondeterminism of fractional Brownian motion. },

author = {Nane, Erkan, Wu, Dongsheng, Xiao, Yimin},

journal = {ESAIM: Probability and Statistics},

keywords = {Fractional Brownian motion; strictlyα-stable Lévy process; α-time Brownian motion; α-time fractional Brownian motion; partial differential equation; local time; Hölder condition.; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE; Hölder condition},

language = {eng},

month = {3},

pages = {1-24},

publisher = {EDP Sciences},

title = {α-time fractional Brownian motion: PDE connections and local times∗},

url = {http://eudml.org/doc/222484},

volume = {16},

year = {2012},

}

TY - JOUR

AU - Nane, Erkan

AU - Wu, Dongsheng

AU - Xiao, Yimin

TI - α-time fractional Brownian motion: PDE connections and local times∗

JO - ESAIM: Probability and Statistics

DA - 2012/3//

PB - EDP Sciences

VL - 16

SP - 1

EP - 24

AB - For 0 < α ≤ 2 and 0 < H < 1, an
α-time fractional Brownian motion is an iterated process
Z = {Z(t) = W(Y(t)), t ≥ 0}
obtained by taking a fractional Brownian motion
{W(t), t ∈ ℝ} with Hurst index
0 < H < 1 and replacing the time parameter with a
strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such
processes have natural connections to partial differential equations and, when
Y is a stable subordinator, can arise as scaling limit of randomly
indexed random walks. The existence, joint continuity and sharp Hölder conditions in the
set variable of the local times of a d-dimensional
α-time fractional Brownian motion
X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)),
where t ≥ 0 and
X1, ..., Xd
are independent copies of Z, are investigated. Our methods rely on the
strong local nondeterminism of fractional Brownian motion.

LA - eng

KW - Fractional Brownian motion; strictlyα-stable Lévy process; α-time Brownian motion; α-time fractional Brownian motion; partial differential equation; local time; Hölder condition.; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE; Hölder condition

UR - http://eudml.org/doc/222484

ER -

## References

top- R.J. Adler, The Geometry of Random Fields. Wiley, New York (1981). Zbl0478.60059
- H. Allouba and W. Zheng, Brownian-time processes : the pde connection and the half-derivative generator. Ann. Probab.29 (2001) 1780–1795. Zbl1018.60066
- F. Aurzada and M. Lifshits, On the Small deviation problem for some iterated processes. Electron. J. Probab.14 (2009) 1992–2010. Zbl1190.60016
- B. Baeumer, M.M. Meerschaert and E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc.361 (2009) 3915–3930. Zbl1186.60079
- B. Baeumer, M.M. Meerschaert and E. Nane, Space-time duality for fractional diffusion. J. Appl. Probab.46 (2009) 1100–1115. Zbl1196.60087
- L. Beghin, L. Sakhno and E. Orsingher, Equations of Mathematical Physics and composition of Brownian and Cauchy processes. Stoch. Anal. Appl.29 (2011) 551–569. Zbl1223.60083
- S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc.137 (1969) 277–299. Zbl0184.40801
- S.M. Berman, Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J.23 (1973) 69–94. Zbl0264.60024
- J. Bertoin, Lévy Processes. Cambridge University Press (1996).
- K. Burdzy, Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, edited by E.Çinlar, K.L. Chung and M.J. Sharpe. Birkhäuser, Boston (1993) 67–87. Zbl0789.60060
- K. Burdzy and D. Khoshnevisan, The level set of iterated Brownian motion, Séminaire de Probabilités XXIX, edited by J. Azéma, M. Emery, P.-A. Meyer and M. Yor. Lect. Notes Math.1613 (1995) 231–236. Zbl0853.60061
- K. Burdzy and D. Khoshnevisan, Brownian motion in a Brownian crack. Ann. Appl. Probab.8 (1998) 708–748. Zbl0937.60081
- E. Csáki, M. Csörgö, A. Földes and P. Révész, The local time of iterated Brownian motion. J. Theoret. Probab.9 (1996) 717–743. Zbl0857.60081
- J. Cuzick and J. DuPreez, Joint continuity of Gaussian local times. Ann. Probab.10 (1982) 810–817. Zbl0492.60032
- Y. Davydov, The invariance principle for stationary processes. Teor. Verojatnost. i Primenen.15 (1970) 498–509. Zbl0219.60030
- R.D. DeBlassie, Higher order PDE’s and symmetric stable processes. Probab. Theory Relat. Fields129 (2004) 495–536. Zbl1060.60077
- R.D. DeBlassie, Iterated Brownian motion in an open set. Ann. Appl. Probab.14 (2004) 1529–1558. Zbl1051.60082
- M. D’Ovidio and E. Orsingher, Composition of processes and related partial differential equations. J. Theor. Probab.24 (2011) 342–375. Zbl1229.60045
- W. Ehm, Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw. Geb.56 (1981) 195–228. Zbl0471.60046
- P. Embrechts and M. Maejima, Selfsimilar Processes. Princeton University Press, Princeton (2002).
- D. Geman and J. Horowitz, Occupation densities. Ann. Probab.8 (1980) 1–67. Zbl0499.60081
- M. Hahn, K. Kobayashi and S. Umarov, Fokker-Plank-Kolmogorv equations associated with SDEs driven by time-changed fractional Brownian motion. Proc. Amer. Math. Soc.139 (2011) 691–705. Zbl1218.60030
- Y. Hu, Hausdorff and packing measures of the level sets of iterated Brownian motion. J. Theoret. Probab.12 (1999) 313–346. Zbl0935.60066
- J.P. Kahane, Some Random Series of Functions, 2nd edition. Cambridge University Press (1985). Zbl0571.60002
- D. Khoshnevisan and Y. Xiao, Images of the Brownian sheet. Trans. Amer. Math. Soc.359 (2007) 3125–3151. Zbl1124.60037
- M.A. Lifshits, Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995). Zbl0832.60002
- W. Linde and Z. Shi, Evaluating the small deviation probabilities for subordinated Lévy processes. Stoch. Process. Appl.113 (2004) 273–287. Zbl1076.60039
- E. Nane, Iterated Brownian motion in parabola-shaped domains. Potential Anal.24 (2006) 105–123. Zbl1090.60071
- E. Nane, Iterated Brownian motion in bounded domains in ℝn. Stoch. Process. Appl.116 (2006) 905–916. Zbl1106.60309
- E. Nane, Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab.11 (2006) 434–459. Zbl1121.60085
- E. Nane, Higher order PDE’s and iterated processes. Trans. Amer. Math. Soc.360 (2008) 2681–2692. Zbl1157.60071
- E. Nane, Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett.79 (2009) 1744–1751. Zbl1173.60317
- E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab.37 (2009) 206–249. Zbl1173.60027
- L.D. Pitt, Local times for Gaussian vector fields. Indiana Univ. Math. J.27 (1978) 309–330. Zbl0382.60055
- G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes : Stochastic models with infinite variance. Chapman & Hall, New York (1994). Zbl0925.60027
- K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). Zbl0973.60001
- A.V. Skorokhod, Asymptotic formulas for stable distribution laws. Selected Translations in Mathematical Statistics and Probability1 (1961) 157–162; Dokl. Akad. Nauk. SSSR98 (1954) 731–734. Zbl0112.10107
- M. Talagrand, Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab.23 (1995) 767–775. Zbl0830.60034
- M. Talagrand, Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields112 (1998) 545–563. Zbl0928.60026
- M.S. Taqqu, Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete31 (1975) 287–302. Zbl0303.60033
- S.J. Taylor, Sample path properties of a transient stable process. J. Math. Mech.16 (1967) 1229–1246. Zbl0178.19301
- W. Whitt, Stochastic-Process Limits. Springer, New York (2002). Zbl0993.60001
- Y. Xiao, Hölder conditions for the local times and Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields109 (1997) 129–157. Zbl0882.60035
- Y. Xiao, Local times and related properties of multi-dimensional iterated Brownian motion. J. Theoret. Probab.11 (1998) 383–408. Zbl0914.60063