α-time fractional Brownian motion: PDE connections and local times∗

Erkan Nane; Dongsheng Wu; Yimin Xiao

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 1-24
  • ISSN: 1292-8100

Abstract

top
For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z =  {Z(t) = W(Y(t)), t ≥ 0}  obtained by taking a fractional Brownian motion  {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.

How to cite

top

Nane, Erkan, Wu, Dongsheng, and Xiao, Yimin. "α-time fractional Brownian motion: PDE connections and local times∗." ESAIM: Probability and Statistics 16 (2012): 1-24. <http://eudml.org/doc/222484>.

@article{Nane2012,
abstract = {For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z =  \{Z(t) = W(Y(t)), t ≥ 0\}  obtained by taking a fractional Brownian motion  \{W(t), t ∈ ℝ\} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process \{Y(t), t ≥ 0\} in ℝ independent of \{W(t), t ∈ R\}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = \{X(t), t ∈ ℝ+\} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion. },
author = {Nane, Erkan, Wu, Dongsheng, Xiao, Yimin},
journal = {ESAIM: Probability and Statistics},
keywords = {Fractional Brownian motion; strictlyα-stable Lévy process; α-time Brownian motion; α-time fractional Brownian motion; partial differential equation; local time; Hölder condition.; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE; Hölder condition},
language = {eng},
month = {3},
pages = {1-24},
publisher = {EDP Sciences},
title = {α-time fractional Brownian motion: PDE connections and local times∗},
url = {http://eudml.org/doc/222484},
volume = {16},
year = {2012},
}

TY - JOUR
AU - Nane, Erkan
AU - Wu, Dongsheng
AU - Xiao, Yimin
TI - α-time fractional Brownian motion: PDE connections and local times∗
JO - ESAIM: Probability and Statistics
DA - 2012/3//
PB - EDP Sciences
VL - 16
SP - 1
EP - 24
AB - For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z =  {Z(t) = W(Y(t)), t ≥ 0}  obtained by taking a fractional Brownian motion  {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.
LA - eng
KW - Fractional Brownian motion; strictlyα-stable Lévy process; α-time Brownian motion; α-time fractional Brownian motion; partial differential equation; local time; Hölder condition.; fractional Brownian motion; strictly -stable Lévy process; -time Brownian motion; -time fractional Brownian motion; PDE; Hölder condition
UR - http://eudml.org/doc/222484
ER -

References

top
  1. R.J. Adler, The Geometry of Random Fields. Wiley, New York (1981).  
  2. H. Allouba and W. Zheng, Brownian-time processes : the pde connection and the half-derivative generator. Ann. Probab.29 (2001) 1780–1795.  
  3. F. Aurzada and M. Lifshits, On the Small deviation problem for some iterated processes. Electron. J. Probab.14 (2009) 1992–2010.  
  4. B. Baeumer, M.M. Meerschaert and E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc.361 (2009) 3915–3930.  
  5. B. Baeumer, M.M. Meerschaert and E. Nane, Space-time duality for fractional diffusion. J. Appl. Probab.46 (2009) 1100–1115.  
  6. L. Beghin, L. Sakhno and E. Orsingher, Equations of Mathematical Physics and composition of Brownian and Cauchy processes. Stoch. Anal. Appl.29 (2011) 551–569.  
  7. S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc.137 (1969) 277–299.  
  8. S.M. Berman, Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J.23 (1973) 69–94.  
  9. J. Bertoin, Lévy Processes. Cambridge University Press (1996).  
  10. K. Burdzy, Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, edited by E.Çinlar, K.L. Chung and M.J. Sharpe. Birkhäuser, Boston (1993) 67–87.  
  11. K. Burdzy and D. Khoshnevisan, The level set of iterated Brownian motion, Séminaire de Probabilités XXIX, edited by J. Azéma, M. Emery, P.-A. Meyer and M. Yor. Lect. Notes Math.1613 (1995) 231–236.  
  12. K. Burdzy and D. Khoshnevisan, Brownian motion in a Brownian crack. Ann. Appl. Probab.8 (1998) 708–748.  
  13. E. Csáki, M. Csörgö, A. Földes and P. Révész, The local time of iterated Brownian motion. J. Theoret. Probab.9 (1996) 717–743.  
  14. J. Cuzick and J. DuPreez, Joint continuity of Gaussian local times. Ann. Probab.10 (1982) 810–817.  
  15. Y. Davydov, The invariance principle for stationary processes. Teor. Verojatnost. i Primenen.15 (1970) 498–509.  
  16. R.D. DeBlassie, Higher order PDE’s and symmetric stable processes. Probab. Theory Relat. Fields129 (2004) 495–536.  
  17. R.D. DeBlassie, Iterated Brownian motion in an open set. Ann. Appl. Probab.14 (2004) 1529–1558.  
  18. M. D’Ovidio and E. Orsingher, Composition of processes and related partial differential equations. J. Theor. Probab.24 (2011) 342–375.  
  19. W. Ehm, Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw. Geb.56 (1981) 195–228.  
  20. P. Embrechts and M. Maejima, Selfsimilar Processes. Princeton University Press, Princeton (2002).  
  21. D. Geman and J. Horowitz, Occupation densities. Ann. Probab.8 (1980) 1–67.  
  22. M. Hahn, K. Kobayashi and S. Umarov, Fokker-Plank-Kolmogorv equations associated with SDEs driven by time-changed fractional Brownian motion. Proc. Amer. Math. Soc.139 (2011) 691–705.  
  23. Y. Hu, Hausdorff and packing measures of the level sets of iterated Brownian motion. J. Theoret. Probab.12 (1999) 313–346.  
  24. J.P. Kahane, Some Random Series of Functions, 2nd edition. Cambridge University Press (1985).  
  25. D. Khoshnevisan and Y. Xiao, Images of the Brownian sheet. Trans. Amer. Math. Soc.359 (2007) 3125–3151.  
  26. M.A. Lifshits, Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995).  
  27. W. Linde and Z. Shi, Evaluating the small deviation probabilities for subordinated Lévy processes. Stoch. Process. Appl.113 (2004) 273–287.  
  28. E. Nane, Iterated Brownian motion in parabola-shaped domains. Potential Anal.24 (2006) 105–123.  
  29. E. Nane, Iterated Brownian motion in bounded domains in ℝn. Stoch. Process. Appl.116 (2006) 905–916.  
  30. E. Nane, Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab.11 (2006) 434–459.  
  31. E. Nane, Higher order PDE’s and iterated processes. Trans. Amer. Math. Soc.360 (2008) 2681–2692.  
  32. E. Nane, Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett.79 (2009) 1744–1751.  
  33. E. Orsingher and L. Beghin, Fractional diffusion equations and processes with randomly varying time, Ann. Probab.37 (2009) 206–249.  
  34. L.D. Pitt, Local times for Gaussian vector fields. Indiana Univ. Math. J.27 (1978) 309–330.  
  35. G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian Random Processes : Stochastic models with infinite variance. Chapman & Hall, New York (1994).  
  36. K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999).  
  37. A.V. Skorokhod, Asymptotic formulas for stable distribution laws. Selected Translations in Mathematical Statistics and Probability1 (1961) 157–162; Dokl. Akad. Nauk. SSSR98 (1954) 731–734.  
  38. M. Talagrand, Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab.23 (1995) 767–775.  
  39. M. Talagrand, Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields112 (1998) 545–563.  
  40. M.S. Taqqu, Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete31 (1975) 287–302.  
  41. S.J. Taylor, Sample path properties of a transient stable process. J. Math. Mech.16 (1967) 1229–1246.  
  42. W. Whitt, Stochastic-Process Limits. Springer, New York (2002).  
  43. Y. Xiao, Hölder conditions for the local times and Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields109 (1997) 129–157.  
  44. Y. Xiao, Local times and related properties of multi-dimensional iterated Brownian motion. J. Theoret. Probab.11 (1998) 383–408.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.