Spaces not distinguishing convergences

Miroslav Repický

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 4, page 829-842
  • ISSN: 0010-2628

Abstract

top
In the present paper we introduce a convergence condition ( Σ ' ) and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.

How to cite

top

Repický, Miroslav. "Spaces not distinguishing convergences." Commentationes Mathematicae Universitatis Carolinae 41.4 (2000): 829-842. <http://eudml.org/doc/22534>.

@article{Repický2000,
abstract = {In the present paper we introduce a convergence condition $(\Sigma ^\{\prime \})$ and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.},
author = {Repický, Miroslav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {P-; QN-; $\Sigma $-; $\Sigma ^\{\prime \}$-; $\Sigma ^*$-; $\Sigma _c$-convergence; a space not distinguishing convergences; mQN-space; -space; wQN-space; QN-space; -space QN-space; wQN-space; weak distributivity of a family of sets},
language = {eng},
number = {4},
pages = {829-842},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Spaces not distinguishing convergences},
url = {http://eudml.org/doc/22534},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Repický, Miroslav
TI - Spaces not distinguishing convergences
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 4
SP - 829
EP - 842
AB - In the present paper we introduce a convergence condition $(\Sigma ^{\prime })$ and continue the study of “not distinguish” for various kinds of convergence of sequences of real functions on a topological space started in [2] and [3]. We compute cardinal invariants associated with introduced properties of spaces.
LA - eng
KW - P-; QN-; $\Sigma $-; $\Sigma ^{\prime }$-; $\Sigma ^*$-; $\Sigma _c$-convergence; a space not distinguishing convergences; mQN-space; -space; wQN-space; QN-space; -space QN-space; wQN-space; weak distributivity of a family of sets
UR - http://eudml.org/doc/22534
ER -

References

top
  1. Bartoszyński T., Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. (1984) MR0719666
  2. Bukovský L., Recław I., Repický M., Spaces not distinguishing pointwise and quasinormal convergence of real functions, Topology Appl. 41 (1991), 25-40. (1991) MR1129696
  3. Bukovský L., Recław I., Repický M., Spaces not distinguishing convergences of real-valued functions, Topology Appl., to appear. 
  4. van Douwen E.K., The integers and topology, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984, pp.111-167. Zbl0561.54004MR0776622
  5. Engelking R., General Topology, Państwowe Wydawnictwo Naukowe, Warszawa, 1977. Zbl0684.54001MR0500779
  6. Kada M., Kamo S., New cardinal invariants related to pseudo-Dirichlet sets, preprint, 1996. 
  7. Kuratowski K., Topologie I, PWN, Warsaw, 1958. Zbl0849.01044
  8. Miller A.W., Special subsets of the real line, Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North Holland, Amsterdam, 1984, pp.201-233. Zbl0588.54035MR0776624
  9. Recław I., Metric spaces not distinguishing pointwise and quasinormal convergence of real functions, Bull. Polish Acad. Sci. Math. 45 (1997), 3 287-289. (1997) MR1477547

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.