Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 1, page 107-136
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topBarles, Guy, and Porretta, Alessio. "Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.1 (2006): 107-136. <http://eudml.org/doc/239988>.
@article{Barles2006,
abstract = {We consider a class of stationary viscous Hamilton-Jacobi equations aswhere $\lambda \ge 0$, $A(x)$ is a bounded and uniformly elliptic matrix and $H(x,\xi )$ is convex in $\xi $ and grows at most like $|\xi |^q+f(x)$, with $1<q<2$ and $f\in L^\{N/\{q^\{\prime \}\}\}(\Omega )$. Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate,i.e.$(1+|u|)^\{\bar\{q\}-1\}\,u\in H^1_0(\Omega )$, for a certain (optimal) exponent $\bar\{q\}$. This completes the recent results in [15], where the existence of at least one solution in this class has been proved.},
author = {Barles, Guy, Porretta, Alessio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {107-136},
publisher = {Scuola Normale Superiore, Pisa},
title = {Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations},
url = {http://eudml.org/doc/239988},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Barles, Guy
AU - Porretta, Alessio
TI - Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 1
SP - 107
EP - 136
AB - We consider a class of stationary viscous Hamilton-Jacobi equations aswhere $\lambda \ge 0$, $A(x)$ is a bounded and uniformly elliptic matrix and $H(x,\xi )$ is convex in $\xi $ and grows at most like $|\xi |^q+f(x)$, with $1<q<2$ and $f\in L^{N/{q^{\prime }}}(\Omega )$. Under such growth conditions solutions are in general unbounded, and there is not uniqueness of usual weak solutions. We prove that uniqueness holds in the restricted class of solutions satisfying a suitable energy-type estimate,i.e.$(1+|u|)^{\bar{q}-1}\,u\in H^1_0(\Omega )$, for a certain (optimal) exponent $\bar{q}$. This completes the recent results in [15], where the existence of at least one solution in this class has been proved.
LA - eng
UR - http://eudml.org/doc/239988
ER -
References
top- [1] N. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal. 24 (1993), 23–35. Zbl0809.35021MR1199524
- [2] G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. Ration. Mech. Anal. 133 (1995), 77–101. Zbl0859.35031MR1367357
- [3] G. Barles, A-P. Blanc, C. Georgelin and M. Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 381–404. Zbl0940.35078MR1736522
- [4] F. Betta, A. Mercaldo, F. Murat, M. Porzio, Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in . A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var. 8 (2002), 239–272. Zbl1092.35032MR1932952
- [5] F. Betta, A. Mercaldo, F. Murat and M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term, Nonlinear Anal. 63 (2005), 153–170. Zbl1125.35343MR2165494
- [6] L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), 215–237. Zbl0803.35046MR1251852
- [7] L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations 17 (1992), 641-655. Zbl0812.35043MR1163440
- [8] L. Boccardo, F. Murat and J.P. Puel, estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326–333. Zbl0785.35033MR1147866
- [9] L. Boccardo, F. Murat and J.P. Puel, Existence de solutions faibles pour des équations elliptiques quasi-linèaires à croissance quadratique, In: “Nonlinear Partial Differential Equations and their Applications”. College de France Seminar, Vol. IV (Paris, 1981/1982), Res. Notes in Math. 84, Pitman, Boston, Mass. – London, 1983, 19–73. Zbl0588.35041MR716511
- [10] A. Dall’Aglio, D. Giachetti and J.P. Puel, Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. (4) 181 (2002), 407–426. Zbl1097.35050MR1939689
- [11] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741–808. Zbl0958.35045MR1760541
- [12] A. Di Perna and P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. (2) 130 (1989), 321–366. Zbl0698.45010MR1014927
- [13] E. Ferone and F. Murat, Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, In: “Equations aux Dérivées Partielles et Applications”, Gauthier-Villars, Ed. Sci. Méd. Elsevier, Paris, 1998, 497–515. Zbl0917.35039MR1648236
- [14] N. Grenon, F. Murat and A. Porretta, Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms, C. R. Acad. Sci. Paris, Ser. I 342 (2006), 23–28. Zbl1149.35352MR2193390
- [15] N. Grenon, F. Murat and A. Porretta, Elliptic equations with superlinear gradient dependent terms, in preparation. Zbl1305.35058
- [16] K. Hansson, V. Maz’ja and I. E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat. 37 (1999), 87–120. Zbl1087.35513MR1673427
- [17] P. L. Lions, Résolution de problèmes elliptiques quasilinèaires, Arch. Ration. Mech. Anal. 74 (1980), 335–353. Zbl0449.35036
- [18] P. L. Lions, Quelques remarques sur les problèmes elliptiques quasilinèaires du second ordre, J. Anal. Math. 45 (1985), 234–254. Zbl0614.35034MR833413
- [19] P. L. Lions and F. Murat, Solutions renormalisées d’équations elliptiques non linéaires, unpublished paper.
- [20] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189–258. Zbl0151.15401MR192177
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.