On equitorsion geodesic mappings of general affine connection spaces
Mića S. Stanković; Svetislav M. Minčić; Ljubica S. Velimirović; Milan Lj. Zlatanović
Rendiconti del Seminario Matematico della Università di Padova (2010)
- Volume: 124, page 77-90
- ISSN: 0041-8994
Access Full Article
topHow to cite
topStanković, Mića S., et al. "On equitorsion geodesic mappings of general affine connection spaces." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 77-90. <http://eudml.org/doc/241558>.
@article{Stanković2010,
author = {Stanković, Mića S., Minčić, Svetislav M., Velimirović, Ljubica S., Zlatanović, Milan Lj.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Ricci type identities; geodesic mapping; Weyl projective curvature},
language = {eng},
pages = {77-90},
publisher = {Seminario Matematico of the University of Padua},
title = {On equitorsion geodesic mappings of general affine connection spaces},
url = {http://eudml.org/doc/241558},
volume = {124},
year = {2010},
}
TY - JOUR
AU - Stanković, Mića S.
AU - Minčić, Svetislav M.
AU - Velimirović, Ljubica S.
AU - Zlatanović, Milan Lj.
TI - On equitorsion geodesic mappings of general affine connection spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 77
EP - 90
LA - eng
KW - Ricci type identities; geodesic mapping; Weyl projective curvature
UR - http://eudml.org/doc/241558
ER -
References
top- [1] A. Einstein, The Bianchi identities in the generalized theory of gravitation, Canadian Jour. Math., 2 (1950), pp. 120--128. Zbl0039.38802MR34134
- [2] L. P. Eisenhart, Non-Riemannian geometry, New York, 1927. Zbl52.0721.02JFM52.0721.02
- [3] L. P. Eisenhart, Generalized Riemannian spaces I, Nat. Acad. Sci. USA, 37 (1951), pp. 311--315. Zbl0043.37301MR43530
- [4] F. Graif, Sulla possibilità di costruire parallelogrami chiusi in alcune varietà a torsione, Bollet. Un. mat. Italiana, Ser. III, 7 (1952), pp. 132--135. Zbl0047.41202MR50340
- [5] G. S. Hall - D. P. Lonie, The principle of equivalence and projective structure in spacetimes, Class. Quantum Grav., 24 (2007), pp. 3617--3636. Zbl1206.83036MR2339411
- [6] G. S. Hall - D. P. Lonie, The principle of equivalence and cosmological metrics, J. Math. Phys., 49 (2008), 022502. Zbl1153.81370MR2392851
- [7] G. S. Hall - D. P. Lonie, Projective equivalence of Einstein spaces in general relativity, Class. Quantum Grav., 26 (2009), 125009. Zbl1170.83443MR2515670
- [8] H. A. Hayden, Subspaces of a space with torsion, Proc. London math. soc., 34 (2) (1932), pp. 27--50. Zbl0005.26601
- [9] I. Hinterleitner - J. Mikeš, On F-planar mappings of spaces with affine connections, Note di Matematica, 27 n. 1 (2007), pp. 111--118. Zbl1150.53009MR2367758
- [10] I. Hinterleitner - J. Mikeš - J. Stranska, Infinitesimal F-Planar Transformations, Russian Mathematics (Iz. VUZ), Vol. 52, No. 4 (2008), pp. 13--18. Zbl1162.53008MR2445169
- [11] M. Jukl - L. Juklova - J. Mikeš, On generalized trace decompositions Problems, Proceedings of the Third International Conference dedicated to 85-th birthday of Professor Kudrijavcev (2008), pp. 299--314.
- [12] J. Mikeš, On geodesic mappings of Einstein spaces (In Russian), Mat. zametki, 28 (1980), pp. 313--317. Zbl0442.53023MR587405
- [13] J. Mikeš, Geodesic mappings of special Riemannian spaces, Coll. Math. Soc. J. Bolyai, 46. Topics in Diff. Geom., Debrecen (Hungary) (1984), pp. 793--813. Zbl0648.53009MR933875
- [14] J. Mikeš, On an order of special transformartion of Riemannian spaces, Dif. Geom. and Apl., Proc. of the Conf. Dubrovnik, 3, (1988), pp. 199--208. Zbl0686.53015MR1040069
- [15] J. Mikeš, Holomorphically projective mappings and their generalizations, Itogi Nauki i Tekhniky, Ser. Probl. Geom. VINITI, 1988. Zbl0983.53013
- [16] J. Mikeš, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. New York, (1996), pp. 311--333. Zbl0866.53028MR1384327
- [17] J. Mikeš - V. Kiosak - A. Vanžurová, Geodesic Mappings of Manifolds with Affine Connection, Olomounc, 2008. Zbl1176.53004MR2488821
- [18] J. Mikeš - G. A. Starko, K-concircular vector fields and holomorphically projective mappings on Kählerian spaces, Rend. del Circolo di Palermo, 46 (1997), pp. 123--127. Zbl0902.53015MR1469028
- [19] S. M. Minčić, Ricci identities in the space of non-symmetric affine connection, Mat. Vesnik, 10 (25) (1973), pp. 161--172. Zbl0278.53012MR341310
- [20] S. M. Minčić, New commutation formulas in the non-symmetric affine connection space, Publ. Inst. Math. (Beograd) (N. S), 22 (36) (1977), pp. 189--199. Zbl0377.53008MR482552
- [21] S. M. Minčić, Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection, Coll. Math. Soc. János Bolyai, 31 (1979), pp. 45--460. Zbl0523.53032
- [22] S. M. Minčić, Geometric interpretations of curvature tensors and pseudotensors of the spaces with non symmetric affine connection, Publ. Inst. Math., 47 (61) (1990), pp. 113--120 (in Russian). Zbl0726.53016MR1103537
- [23] S. M. Minčić - M. S. Stanković, On geodesic mapping of general affine connection spaces and of generalized Riemannian spaces, Mat. vesnik, 49 (1997), pp. 27--33. Zbl0949.53013MR1491944
- [24] S. M. Minčić - M. S. Stanković, Equitorsion geodesic mappings of generalized Riemannian spaces, Publ. Inst. Math. (Beograd) (N.S), 61 (75) (1997), pp. 97--104. Zbl0886.53035MR1472941
- [25] M. Prvanović, Holomorphically projective transformations in a locally product Riemannian spaces, Math. Balkanica, 1 (1971), pp. 195--213. Zbl0221.53062MR288710
- [26] M. Prvanović, Four curvature tensors of non-symmetric affine connexion (in Russian), Proceedings of the conference "150 years of Lobachevski geometry", Kazan' 1976, Moscow 1997, pp. 199--205.
- [27] M. Prvanović, Relative Frenet formulae for a curve in a subspace of a Riemannian space, Tensor, N. S., 9 (1959), pp. 190--204. Zbl0102.16502MR108807
- [28] M. Prvanović, A note on holomorphically projective transformations of the Kähler space, Tensor, N. S. Vol. 35 (1981), pp. 99--104. Zbl0467.53032MR614141
- [29] M. Prvanović, -Projective Curvature Tensors, Annales Univ. Maria Curie-Sklodowska, Lublin - Polonia, XLI, 16 (1986), pp. 123--133. Zbl0698.53003MR1049184
- [30] Zh. Radulovich, Holomorphically projective mappings of parabolically Kählerian spaces, Math. Montisnigri, Vol. 8 (1997), pp. 159--184. Zbl1041.53033MR1623833
- [31] U. P. Singh, On relative curvature tensors in the subspace of a Riemannian space, Rev. de la fac. des sc. Istanbul, 33 (1968), pp. 69--75. Zbl0217.47402MR307094
- [32] K. D. Singh, On generalized Riemann spaces, Riv. Mat. Univ. Parma, 7 (1956), pp. 125--138. Zbl0073.16802MR88759
- [33] M. Shiha, On the theory of holomorphically projective mappings parabolically Kählerian spaces, Differ. Geometry and Its Appl. Proc. Conf. Opava. Silesian Univ., Opava (1993), pp. 157--160. Zbl0805.53017MR1255537
- [34] N. S. Sinyukov, Geodesic mappings of Riemannian spaces (in Rusian), Nauka, Moskow, 1979. Zbl0637.53020MR552022
- [35] M. S. Stanković, First type almost geodesic mappings of general affine connection spaces, Novi Sad J. Math., 29, No. 3 (1999), pp. 313--323. Zbl0951.53011MR1771009
- [36] M. S. Stanković, On a canonic almost geodesic mappings of the second type of affine spaces, Filomat (Niš), 13 (1999), pp. 105--114. Zbl0971.53011MR1803017
- [37] M. S. Stanković, On a special almost geodesic mappings of the third type of affine spaces, Novi Sad J. Math., 31, No. 2 (2001), pp. 125--135. Zbl1012.53013MR1897496
- [38] M. S. Stanković - S. M. Minčić, New special geodesic mappings of generalized Riemannian space, Publ. Inst. Math. (Beograd) (N.S), 67 (81) (2000), pp. 92--102. Zbl1013.53009MR1761305
- [39] M. S. Stanković - S. M. Minčić, New special geodesic mappings of affine connection spaces, Filomat, 14 (2000), pp. 19--31. Zbl1041.53010MR1953991
- [40] M. S. Stanković - S. M. Minčić - Lj. S. Velimirović, On holomorphically projective mappings of generalized Kählerian spaces, Mat. vesnik, 54 (2002), pp. 195--202. Zbl1060.53014MR1996618
- [41] M. S. Stanković - S. M. Minčić - Lj. S. Velimirović, On equitorsion holomorphically projective mappings of generalised Kählerian spaces, Czechoslovak Mathematical Journal, 54 (129) (2004), pp. 701--715. Zbl1080.53016MR2086727
- [42] M. S. Stanković - Lj. M. Zlatanović - Lj. S. Velimirović, Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind, Czechoslovak Mathematical Journal, Vol. 60, No. 3 (2010), pp. 635--653. Zbl1224.53031MR2672406
- [43] L. S. Velimirović - S. M. Minčić - M. S. Stanković, Infinitesimal Deformations and Lie Derivative of a Non-symmetric Affine Connection Space, Acta Univ. Palacki. Olomuc, Fac. rer. nat., Mathematica, 42 (2003), pp. 111--121. Zbl1061.53010MR2056026
- [44] K. Yano, Sur la théorie des déformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo, 6 (1949), pp. 1--75. Zbl0040.37803MR35084
- [45] K. Yano, The theory of Lie derivatives and its applications, N-Holland Publ. Co. Amsterdam, 1957. Zbl0077.15802MR88769
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.