On equitorsion geodesic mappings of general affine connection spaces

Mića S. Stanković; Svetislav M. Minčić; Ljubica S. Velimirović; Milan Lj. Zlatanović

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 77-90
  • ISSN: 0041-8994

How to cite

top

Stanković, Mića S., et al. "On equitorsion geodesic mappings of general affine connection spaces." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 77-90. <http://eudml.org/doc/241558>.

@article{Stanković2010,
author = {Stanković, Mića S., Minčić, Svetislav M., Velimirović, Ljubica S., Zlatanović, Milan Lj.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Ricci type identities; geodesic mapping; Weyl projective curvature},
language = {eng},
pages = {77-90},
publisher = {Seminario Matematico of the University of Padua},
title = {On equitorsion geodesic mappings of general affine connection spaces},
url = {http://eudml.org/doc/241558},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Stanković, Mića S.
AU - Minčić, Svetislav M.
AU - Velimirović, Ljubica S.
AU - Zlatanović, Milan Lj.
TI - On equitorsion geodesic mappings of general affine connection spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 77
EP - 90
LA - eng
KW - Ricci type identities; geodesic mapping; Weyl projective curvature
UR - http://eudml.org/doc/241558
ER -

References

top
  1. [1] A. Einstein, The Bianchi identities in the generalized theory of gravitation, Canadian Jour. Math., 2 (1950), pp. 120--128. Zbl0039.38802MR34134
  2. [2] L. P. Eisenhart, Non-Riemannian geometry, New York, 1927. Zbl52.0721.02JFM52.0721.02
  3. [3] L. P. Eisenhart, Generalized Riemannian spaces I, Nat. Acad. Sci. USA, 37 (1951), pp. 311--315. Zbl0043.37301MR43530
  4. [4] F. Graif, Sulla possibilità di costruire parallelogrami chiusi in alcune varietà a torsione, Bollet. Un. mat. Italiana, Ser. III, 7 (1952), pp. 132--135. Zbl0047.41202MR50340
  5. [5] G. S. Hall - D. P. Lonie, The principle of equivalence and projective structure in spacetimes, Class. Quantum Grav., 24 (2007), pp. 3617--3636. Zbl1206.83036MR2339411
  6. [6] G. S. Hall - D. P. Lonie, The principle of equivalence and cosmological metrics, J. Math. Phys., 49 (2008), 022502. Zbl1153.81370MR2392851
  7. [7] G. S. Hall - D. P. Lonie, Projective equivalence of Einstein spaces in general relativity, Class. Quantum Grav., 26 (2009), 125009. Zbl1170.83443MR2515670
  8. [8] H. A. Hayden, Subspaces of a space with torsion, Proc. London math. soc., 34 (2) (1932), pp. 27--50. Zbl0005.26601
  9. [9] I. Hinterleitner - J. Mikeš, On F-planar mappings of spaces with affine connections, Note di Matematica, 27 n. 1 (2007), pp. 111--118. Zbl1150.53009MR2367758
  10. [10] I. Hinterleitner - J. Mikeš - J. Stranska, Infinitesimal F-Planar Transformations, Russian Mathematics (Iz. VUZ), Vol. 52, No. 4 (2008), pp. 13--18. Zbl1162.53008MR2445169
  11. [11] M. Jukl - L. Juklova - J. Mikeš, On generalized trace decompositions Problems, Proceedings of the Third International Conference dedicated to 85-th birthday of Professor Kudrijavcev (2008), pp. 299--314. 
  12. [12] J. Mikeš, On geodesic mappings of Einstein spaces (In Russian), Mat. zametki, 28 (1980), pp. 313--317. Zbl0442.53023MR587405
  13. [13] J. Mikeš, Geodesic mappings of special Riemannian spaces, Coll. Math. Soc. J. Bolyai, 46. Topics in Diff. Geom., Debrecen (Hungary) (1984), pp. 793--813. Zbl0648.53009MR933875
  14. [14] J. Mikeš, On an order of special transformartion of Riemannian spaces, Dif. Geom. and Apl., Proc. of the Conf. Dubrovnik, 3, (1988), pp. 199--208. Zbl0686.53015MR1040069
  15. [15] J. Mikeš, Holomorphically projective mappings and their generalizations, Itogi Nauki i Tekhniky, Ser. Probl. Geom. VINITI, 1988. Zbl0983.53013
  16. [16] J. Mikeš, Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. New York, (1996), pp. 311--333. Zbl0866.53028MR1384327
  17. [17] J. Mikeš - V. Kiosak - A. Vanžurová, Geodesic Mappings of Manifolds with Affine Connection, Olomounc, 2008. Zbl1176.53004MR2488821
  18. [18] J. Mikeš - G. A. Starko, K-concircular vector fields and holomorphically projective mappings on Kählerian spaces, Rend. del Circolo di Palermo, 46 (1997), pp. 123--127. Zbl0902.53015MR1469028
  19. [19] S. M. Minčić, Ricci identities in the space of non-symmetric affine connection, Mat. Vesnik, 10 (25) (1973), pp. 161--172. Zbl0278.53012MR341310
  20. [20] S. M. Minčić, New commutation formulas in the non-symmetric affine connection space, Publ. Inst. Math. (Beograd) (N. S), 22 (36) (1977), pp. 189--199. Zbl0377.53008MR482552
  21. [21] S. M. Minčić, Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection, Coll. Math. Soc. János Bolyai, 31 (1979), pp. 45--460. Zbl0523.53032
  22. [22] S. M. Minčić, Geometric interpretations of curvature tensors and pseudotensors of the spaces with non symmetric affine connection, Publ. Inst. Math., 47 (61) (1990), pp. 113--120 (in Russian). Zbl0726.53016MR1103537
  23. [23] S. M. Minčić - M. S. Stanković, On geodesic mapping of general affine connection spaces and of generalized Riemannian spaces, Mat. vesnik, 49 (1997), pp. 27--33. Zbl0949.53013MR1491944
  24. [24] S. M. Minčić - M. S. Stanković, Equitorsion geodesic mappings of generalized Riemannian spaces, Publ. Inst. Math. (Beograd) (N.S), 61 (75) (1997), pp. 97--104. Zbl0886.53035MR1472941
  25. [25] M. Prvanović, Holomorphically projective transformations in a locally product Riemannian spaces, Math. Balkanica, 1 (1971), pp. 195--213. Zbl0221.53062MR288710
  26. [26] M. Prvanović, Four curvature tensors of non-symmetric affine connexion (in Russian), Proceedings of the conference "150 years of Lobachevski geometry", Kazan' 1976, Moscow 1997, pp. 199--205. 
  27. [27] M. Prvanović, Relative Frenet formulae for a curve in a subspace of a Riemannian space, Tensor, N. S., 9 (1959), pp. 190--204. Zbl0102.16502MR108807
  28. [28] M. Prvanović, A note on holomorphically projective transformations of the Kähler space, Tensor, N. S. Vol. 35 (1981), pp. 99--104. Zbl0467.53032MR614141
  29. [29] M. Prvanović, π -Projective Curvature Tensors, Annales Univ. Maria Curie-Sklodowska, Lublin - Polonia, XLI, 16 (1986), pp. 123--133. Zbl0698.53003MR1049184
  30. [30] Zh. Radulovich, Holomorphically projective mappings of parabolically Kählerian spaces, Math. Montisnigri, Vol. 8 (1997), pp. 159--184. Zbl1041.53033MR1623833
  31. [31] U. P. Singh, On relative curvature tensors in the subspace of a Riemannian space, Rev. de la fac. des sc. Istanbul, 33 (1968), pp. 69--75. Zbl0217.47402MR307094
  32. [32] K. D. Singh, On generalized Riemann spaces, Riv. Mat. Univ. Parma, 7 (1956), pp. 125--138. Zbl0073.16802MR88759
  33. [33] M. Shiha, On the theory of holomorphically projective mappings parabolically Kählerian spaces, Differ. Geometry and Its Appl. Proc. Conf. Opava. Silesian Univ., Opava (1993), pp. 157--160. Zbl0805.53017MR1255537
  34. [34] N. S. Sinyukov, Geodesic mappings of Riemannian spaces (in Rusian), Nauka, Moskow, 1979. Zbl0637.53020MR552022
  35. [35] M. S. Stanković, First type almost geodesic mappings of general affine connection spaces, Novi Sad J. Math., 29, No. 3 (1999), pp. 313--323. Zbl0951.53011MR1771009
  36. [36] M. S. Stanković, On a canonic almost geodesic mappings of the second type of affine spaces, Filomat (Niš), 13 (1999), pp. 105--114. Zbl0971.53011MR1803017
  37. [37] M. S. Stanković, On a special almost geodesic mappings of the third type of affine spaces, Novi Sad J. Math., 31, No. 2 (2001), pp. 125--135. Zbl1012.53013MR1897496
  38. [38] M. S. Stanković - S. M. Minčić, New special geodesic mappings of generalized Riemannian space, Publ. Inst. Math. (Beograd) (N.S), 67 (81) (2000), pp. 92--102. Zbl1013.53009MR1761305
  39. [39] M. S. Stanković - S. M. Minčić, New special geodesic mappings of affine connection spaces, Filomat, 14 (2000), pp. 19--31. Zbl1041.53010MR1953991
  40. [40] M. S. Stanković - S. M. Minčić - Lj. S. Velimirović, On holomorphically projective mappings of generalized Kählerian spaces, Mat. vesnik, 54 (2002), pp. 195--202. Zbl1060.53014MR1996618
  41. [41] M. S. Stanković - S. M. Minčić - Lj. S. Velimirović, On equitorsion holomorphically projective mappings of generalised Kählerian spaces, Czechoslovak Mathematical Journal, 54 (129) (2004), pp. 701--715. Zbl1080.53016MR2086727
  42. [42] M. S. Stanković - Lj. M. Zlatanović - Lj. S. Velimirović, Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind, Czechoslovak Mathematical Journal, Vol. 60, No. 3 (2010), pp. 635--653. Zbl1224.53031MR2672406
  43. [43] L. S. Velimirović - S. M. Minčić - M. S. Stanković, Infinitesimal Deformations and Lie Derivative of a Non-symmetric Affine Connection Space, Acta Univ. Palacki. Olomuc, Fac. rer. nat., Mathematica, 42 (2003), pp. 111--121. Zbl1061.53010MR2056026
  44. [44] K. Yano, Sur la théorie des déformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo, 6 (1949), pp. 1--75. Zbl0040.37803MR35084
  45. [45] K. Yano, The theory of Lie derivatives and its applications, N-Holland Publ. Co. Amsterdam, 1957. Zbl0077.15802MR88769

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.