Dirichlet problem with L p -boundary data in contractible domains of Carnot groups

Andrea Bonfiglioli; Ermanno Lanconelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 4, page 579-610
  • ISSN: 0391-173X

Abstract

top
Let be a sub-laplacian on a stratified Lie group G . In this paper we study the Dirichlet problem for with L p -boundary data, on domains Ω which are contractible with respect to the natural dilations of G . One of the main difficulties we face is the presence of non-regular boundary points for the usual Dirichlet problem for . A potential theory approach is followed. The main results are applied to study a suitable notion of Hardy spaces.

How to cite

top

Bonfiglioli, Andrea, and Lanconelli, Ermanno. "Dirichlet problem with L$^{\hbox{p}}$-boundary data in contractible domains of Carnot groups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 579-610. <http://eudml.org/doc/242212>.

@article{Bonfiglioli2006,
abstract = {Let $\{\mathcal \{L\}\}$ be a sub-laplacian on a stratified Lie group $\{G\}$. In this paper we study the Dirichlet problem for $\{\mathcal \{L\}\}$ with $L^p$-boundary data, on domains $\Omega $ which are contractible with respect to the natural dilations of $\{G\}$. One of the main difficulties we face is the presence of non-regular boundary points for the usual Dirichlet problem for $\{\mathcal \{L\}\}$. A potential theory approach is followed. The main results are applied to study a suitable notion of Hardy spaces.},
author = {Bonfiglioli, Andrea, Lanconelli, Ermanno},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {579-610},
publisher = {Scuola Normale Superiore, Pisa},
title = {Dirichlet problem with L$^\{\hbox\{p\}\}$-boundary data in contractible domains of Carnot groups},
url = {http://eudml.org/doc/242212},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Bonfiglioli, Andrea
AU - Lanconelli, Ermanno
TI - Dirichlet problem with L$^{\hbox{p}}$-boundary data in contractible domains of Carnot groups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 579
EP - 610
AB - Let ${\mathcal {L}}$ be a sub-laplacian on a stratified Lie group ${G}$. In this paper we study the Dirichlet problem for ${\mathcal {L}}$ with $L^p$-boundary data, on domains $\Omega $ which are contractible with respect to the natural dilations of ${G}$. One of the main difficulties we face is the presence of non-regular boundary points for the usual Dirichlet problem for ${\mathcal {L}}$. A potential theory approach is followed. The main results are applied to study a suitable notion of Hardy spaces.
LA - eng
UR - http://eudml.org/doc/242212
ER -

References

top
  1. [1] D. H. Armitage and S. J. Gardiner, “Classical Potential Theory”, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. Zbl0972.31001MR1801253
  2. [2] S. Axler, P. Bourdon and W. Ramey, “Harmonic Function Theory”, Graduate Texts in Mathematics, Vol. 137, Springer-Verlag, New York, 1992. Zbl0765.31001MR1184139
  3. [3] G. Ben Arous, S. Kusuoka and D. W. Stroock, The Poisson kernel for certain degenerate elliptic operators, J. Funct. Anal. 56 (1984), 171–209. Zbl0556.35036MR738578
  4. [4] A. Bonfiglioli and C. Cinti, A Poisson-Jensen type representation formula for subharmonic functions on stratified Lie groups, Potential Anal. 22 (2005), 151–169. Zbl1069.31001MR2137059
  5. [5] A. Bonfiglioli and C. Cinti, The theory of energy for sub-Laplacians with an application to quasi-continuity Manuscripta Math. 118 (2005), 283–309. Zbl1131.35006MR2183041
  6. [6] A. Bonfiglioli and E. Lanconelli, Liouville-type theorems for real sub-Laplacians, Manuscripta Math. 105 (2001), 111–124. Zbl1016.35014MR1885817
  7. [7] A. Bonfiglioli and E. Lanconelli, Subharmonic functions on Carnot groups, Math. Ann. 325 (2003), 97–122. Zbl1017.31003MR1957266
  8. [8] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations 7 (2002), 1153–1192. Zbl1036.35061MR1919700
  9. [9] A. Bonfiglioli and F. Uguzzoni, A note on lifting of Carnot groups, Rev. Mat. Iberoamericana 21 (2005), to appear. Zbl1100.35029MR2232674
  10. [10] J.-M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier 19 (1969), 277–304. Zbl0176.09703MR262881
  11. [11] L. Capogna and N. Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), 403–432. Zbl0926.35043MR1658616
  12. [12] L. Capogna, N. Garofalo and D. M. Nhieu, A version of a theorem of Dahlberg for the subelliptic Dirichlet problem, Math. Res. Lett. 5 (1998), 541–549. Zbl0934.22017MR1653336
  13. [13] L. Capogna, N. Garofalo and D. M. Nhieu, Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg type, Amer. J. Math. 124 (2002), 273–306. Zbl0998.22001MR1890994
  14. [14] J. Chabrowski, “The Dirichlet Problem with L 2 -Boundary Data for Elliptic Linear Equations”, Lecture Notes in Mathematics, Vol. 1482, Springer-Verlag, Berlin, 1991. Zbl0734.35024MR1165533
  15. [15] D. Christodoulou, On the geometry and dynamics of crystalline continua, Ann. Inst. H. Poincaré Phys. Theor. 69 (1998), 335–358. Zbl0916.73013MR1648987
  16. [16] G. Cimmino, Nuovo tipo di condizione al contorno e nuovo metodo di trattazione per il problema generalizzato di Dirichlet Rend. Circ. Mat. Palermo 61 (1937), 177–221. Zbl0019.26301JFM64.1163.01
  17. [17] G. Cimmino, Equazione di Poisson e problema generalizzato di Dirichlet, Atti Acc. Italia, Rend. Cl. Sci. Fis. Mat. Nat. 1 (1940), 322–329. MR1888JFM66.0445.01
  18. [18] G. Citti, M. Manfredini and A. Sarti, Neuronal oscillations in the visual cortex: Γ -convergence to the Riemannian Mumford-Shah functional SIAM J. Math. Anal. 35 (2004), 1394–1419. Zbl1058.49010MR2083784
  19. [19] C. Constantinescu and A. Cornea, “Potential Theory on Harmonic Spaces”, Die Grundlehren der mathematischen Wissenschaften, Band 158, Springer-Verlag, New York-Heidelberg, 1972. Zbl0248.31011MR419799
  20. [20] E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), 239–247. Zbl0661.53035MR924068
  21. [21] G. B. Folland, Subelliptic Estimates and Function Spaces on Nilpotent Groups, Ark. Mat. 13 (1975), 161–207. Zbl0312.35026MR494315
  22. [22] G. B. Folland and E. M. Stein, “Hardy spaces on homogeneous groups”, Mathematical Notes, Vol. 28, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Zbl0508.42025MR657581
  23. [23] L. Gallardo, Capacités, mouvement brownien et problème de l’épine de Lebesgue sur les groupes de Lie nilpotents, In: Probability measures on groups, Oberwolfach, 1981, 96–120, Lecture Notes in Math., Vol. 928, Springer, Berlin-New York, 1982. Zbl0483.60072MR669065
  24. [24] N. Garofalo – D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math. 74 (1998), 67–97. Zbl0906.46026MR1631642
  25. [25] L. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents Acta Math. 139 (1977) 95–153. Zbl0366.22010MR461589
  26. [26] W. Hansen and H. Hueber, The Dirichlet problem for sub-Laplacians on nilpotent Lie groups - geometric criteria for regularity Math. Ann. 276 (1987), 537–547. Zbl0601.31007MR879533
  27. [27] L. L. Helms, “Introduction to Potential Theory”, Pure and Applied Mathematics, Vol. 22, Wiley-Interscience, John Wiley & Sons, New York-London-Sydney, 1969. Zbl0188.17203MR261018
  28. [28] R. M. Hervé and M. Hervé, Les fonctions surharmoniques dans l’axiomatique de M. Brelot associées á un opérateur elliptique dégénéré, Ann. Inst. Fourier (Grenoble) 22 (1972), 131–145. Zbl0224.31014MR377092
  29. [29] L. Hörmander, Hypoelliptic second-order differential equations, Acta Math. 121 (1968), 147–171. Zbl0156.10701MR222474
  30. [30] H. Hueber, Wiener criterion in potential theory with applications to nilpotent Lie groups Math. Z. 190 (1985), 527–542. Zbl0585.31004MR808920
  31. [31] H. Hueber, Examples of irregular domains for some hypoelliptic differential operators Expo. Math. 4 (1986), 189–192. Zbl0597.58036MR879912
  32. [32] D. Jerison, Boundary regularity in the Dirichlet problem for b on CR manifolds, Comm. Pure Appl. Math. 36 (1983) 143–181. Zbl0544.35069MR690655
  33. [33] C. E. Kenig, “Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems”, Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, Vol. 83, American Mathematical Society, Providence, RI, 1994. Zbl0812.35001MR1282720
  34. [34] E. Lanconelli, Nonlinear equations on Carnot groups and curvature problems for CR manifolds, Renato Caccioppoli and modern analysis. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), 227–238. Zbl1225.35059MR2064269
  35. [35] J. Mitchell, On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), 35–45. Zbl0554.53023MR806700
  36. [36] A. Montanari and E. Lanconelli, Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations 202 (2004), 306–331. Zbl1161.35414MR2068443
  37. [37] R. Montgomery, “A Tour of subRiemannian Geometries, their Geodesics and Applications”, Mathematical Surveys and Monographs, Vol. 91, American Mathematical Society, Providence, RI, 2002. Zbl1044.53022MR1867362
  38. [38] R. Monti and D. Morbidelli, Trace theorems for vector fields, Math. Z. 239 (2002), 747–776. Zbl1030.46041MR1902060
  39. [39] P. Negrini and V. Scornazzani, Wiener criterion for a class of degenerate elliptic operators, J. Differential Equations 66 (1987), 151–164. Zbl0633.35018MR871992
  40. [40] M. von Rentlen, Friedrich Prym (1841–1915) and his investigations on the Dirichlet problem, In: “Studies in the history of modern mathematics”, II, Rend. Circ. Mat. Palermo (2) Suppl. No. 44 (1996), 43–55. Zbl0897.01011MR1449186
  41. [41] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247–320. Zbl0346.35030MR436223
  42. [42] E. M. Stein, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, Princeton Mathematical Series, Vol. 43, Princeton, NJ: Princeton University Press, 1993. Zbl0821.42001MR1232192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.