Nonlinear equations on Carnot groups and curvature problems for CR manifolds
- Volume: 14, Issue: 3, page 227-238
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topLanconelli, Ermanno. "Nonlinear equations on Carnot groups and curvature problems for CR manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.3 (2003): 227-238. <http://eudml.org/doc/252356>.
@article{Lanconelli2003,
abstract = {We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for $CR$ manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the $CR$ sphere and of the Levi-curvature equation for strictly pseudoconvex functions.},
author = {Lanconelli, Ermanno},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hypoellipticity; Carnot groups; Sub-Laplacians; Webster-Tanaka curvature; Levi-curvature; hypoellipticity; sub-Laplacians},
language = {eng},
month = {9},
number = {3},
pages = {227-238},
publisher = {Accademia Nazionale dei Lincei},
title = {Nonlinear equations on Carnot groups and curvature problems for CR manifolds},
url = {http://eudml.org/doc/252356},
volume = {14},
year = {2003},
}
TY - JOUR
AU - Lanconelli, Ermanno
TI - Nonlinear equations on Carnot groups and curvature problems for CR manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/9//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 3
SP - 227
EP - 238
AB - We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for $CR$ manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the $CR$ sphere and of the Levi-curvature equation for strictly pseudoconvex functions.
LA - eng
KW - Hypoellipticity; Carnot groups; Sub-Laplacians; Webster-Tanaka curvature; Levi-curvature; hypoellipticity; sub-Laplacians
UR - http://eudml.org/doc/252356
ER -
References
top- AMBROSETTI, A. - BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
- BEDFORD, E. - GAVEAU, B., Hypersurfaces with bounded Levi form. Ind. Univ. Math. J., 27, 1978, 867-877. Zbl0365.32011MR499287
- CACCIOPPOLI, R., Sui teoremi di esistenza di Riemann. Rend. Acc. Sc. Napoli, 4, 1934, 49-54. Zbl0010.16804JFM60.0310.06
- CITTI, G., -regularity of solutions of the Levi equation. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 517-534. Zbl0921.35033MR1632929DOI10.1016/S0294-1449(98)80033-4
- CITTI, G. - LANCONELLI, E. - MONTANARI, A., Smoothness of Lipschitz-continuous graphs with non-vanishing Levi curvature. Acta Math., 118, 2002, 87-128. Zbl1030.35084MR1947459DOI10.1007/BF02392796
- FOLLAND, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Math., 13, 1975, 161-207. Zbl0312.35026MR494315
- GALLARDO, L., Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur le groups de Lie nilpotents. Proc. VII Oberwolfach Conference on Probability measures on groups. Lectures Notes in Math., 928, Springer-Verlag, Berlin-New York1982, 96-120. Zbl0483.60072MR669065
- GAMARA, N., The Yamabe conjecture: the case . J. Eur. Math. Soc., 3, 2001, 105-137. Zbl0988.53013MR1831872DOI10.1007/PL00011303
- GAMARA, N. - YACOUB, R., Yamabe conjecture: the conformally flat case. Pacific J. of Math., 201, 2001, 121-175. Zbl1054.32020MR1867895DOI10.2140/pjm.2001.201.121
- HEBEY, E., Changement de métriques conformes sur la sphére. Le problème de Nirenberg. Bull. Sc. Math., 114, 1990, 215-242. Zbl0713.53023MR1056162
- HORMANDER, L., Hypoelliptic second order differential equations. Acta Math., 119, 1967, 147-171. Zbl0156.10701MR222474
- JERISON, D. - LEE, J.M., Intrinsic normal coordinates and the Yamabe problem. J. Amer. Math. Soc., 1, 1988, 1-13. Zbl0634.32016MR982177
- JERISON, D. - LEE, J.M., Extremals of the Sobolev inequality on the Heisenberg group and the Yamabe problem. J. of Diff. Geom., 29, 1989, 303-343. Zbl0671.32016MR924699DOI10.2307/1990964
- KOHN, J.J. - NIRENBERG, L., A pseudoconvex domain not admitting a holomorphic support function. Math. Ann., 201, 1973, 265-268. Zbl0248.32013MR330513
- KOLMOGOROV, A., Zufällige Bewegungen. Ann. of Math., 35, 1934, 116-117. Zbl0008.39906MR1503147JFM60.1159.01
- LASCIALFARI, F. - MONTANARI, A., Smooth regularity for solutions of the Levi Monge-Ampère equations. Rend. Mat. Acc. Lincei, s. 9, v. 12, 2001, 1633-1664. Zbl1019.35056MR1898454
- LEVI, E.E., Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. di Mat. Pura ed Appl., 17, 1910, 61-87. JFM41.0487.01
- LEVI, E.E., Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiere del campo di esistenza di una funzione analitica di due variabili complesse. Ann. di Mat. Pura ed Appl., 18, 1911, 69-79. JFM42.0449.02
- MONTANARI, A. - LANCONELLI, E., Strong comparison principle for symmetric functions in the eigenvalues of the Levi form. Preprint.
- MALCHIODI, A. - UGUZZONI, F., A perturbation result for the Webster scalar curvature problem on the sphere. J. Math. Pures Appl., 81, 2002, 983-997. Zbl1042.53025MR1946912DOI10.1016/S0021-7824(01)01249-1
- ROTHSCHILD, L.P. - STEIN, E.M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
- SLODKOWSKI, Z. - TOMASSINI, G., Weak solutions for the Levi equation and envelope of holomorphy. J. Funct. Anal., 101, 1991, 392-407. Zbl0744.35015MR1136942DOI10.1016/0022-1236(91)90164-Z
- SLODKOWSKI, Z. - TOMASSINI, G., The Levi equation in higher dimension and relationships to the envelope of holomorphy. Amer. J. of Math., 116, 1994, 392-407. Zbl0802.35050MR1269612DOI10.2307/2374937
- WEYL, H., The method of the orthogonal projection in Potential Theory. Duke Math. J., 7, 1940, 411-444. MR3331JFM66.0444.01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.