Nonlinear equations on Carnot groups and curvature problems for CR manifolds
- Volume: 14, Issue: 3, page 227-238
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- AMBROSETTI, A. - BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
- BEDFORD, E. - GAVEAU, B., Hypersurfaces with bounded Levi form. Ind. Univ. Math. J., 27, 1978, 867-877. Zbl0365.32011MR499287
- CACCIOPPOLI, R., Sui teoremi di esistenza di Riemann. Rend. Acc. Sc. Napoli, 4, 1934, 49-54. Zbl0010.16804JFM60.0310.06
- CITTI, G., -regularity of solutions of the Levi equation. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 517-534. Zbl0921.35033MR1632929DOI10.1016/S0294-1449(98)80033-4
- CITTI, G. - LANCONELLI, E. - MONTANARI, A., Smoothness of Lipschitz-continuous graphs with non-vanishing Levi curvature. Acta Math., 118, 2002, 87-128. Zbl1030.35084MR1947459DOI10.1007/BF02392796
- FOLLAND, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Math., 13, 1975, 161-207. Zbl0312.35026MR494315
- GALLARDO, L., Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur le groups de Lie nilpotents. Proc. VII Oberwolfach Conference on Probability measures on groups. Lectures Notes in Math., 928, Springer-Verlag, Berlin-New York1982, 96-120. Zbl0483.60072MR669065
- GAMARA, N., The Yamabe conjecture: the case . J. Eur. Math. Soc., 3, 2001, 105-137. Zbl0988.53013MR1831872DOI10.1007/PL00011303
- GAMARA, N. - YACOUB, R., Yamabe conjecture: the conformally flat case. Pacific J. of Math., 201, 2001, 121-175. Zbl1054.32020MR1867895DOI10.2140/pjm.2001.201.121
- HEBEY, E., Changement de métriques conformes sur la sphére. Le problème de Nirenberg. Bull. Sc. Math., 114, 1990, 215-242. Zbl0713.53023MR1056162
- HORMANDER, L., Hypoelliptic second order differential equations. Acta Math., 119, 1967, 147-171. Zbl0156.10701MR222474
- JERISON, D. - LEE, J.M., Intrinsic normal coordinates and the Yamabe problem. J. Amer. Math. Soc., 1, 1988, 1-13. Zbl0634.32016MR982177
- JERISON, D. - LEE, J.M., Extremals of the Sobolev inequality on the Heisenberg group and the Yamabe problem. J. of Diff. Geom., 29, 1989, 303-343. Zbl0671.32016MR924699DOI10.2307/1990964
- KOHN, J.J. - NIRENBERG, L., A pseudoconvex domain not admitting a holomorphic support function. Math. Ann., 201, 1973, 265-268. Zbl0248.32013MR330513
- KOLMOGOROV, A., Zufällige Bewegungen. Ann. of Math., 35, 1934, 116-117. Zbl0008.39906MR1503147JFM60.1159.01
- LASCIALFARI, F. - MONTANARI, A., Smooth regularity for solutions of the Levi Monge-Ampère equations. Rend. Mat. Acc. Lincei, s. 9, v. 12, 2001, 1633-1664. Zbl1019.35056MR1898454
- LEVI, E.E., Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. di Mat. Pura ed Appl., 17, 1910, 61-87. JFM41.0487.01
- LEVI, E.E., Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiere del campo di esistenza di una funzione analitica di due variabili complesse. Ann. di Mat. Pura ed Appl., 18, 1911, 69-79. JFM42.0449.02
- MONTANARI, A. - LANCONELLI, E., Strong comparison principle for symmetric functions in the eigenvalues of the Levi form. Preprint.
- MALCHIODI, A. - UGUZZONI, F., A perturbation result for the Webster scalar curvature problem on the sphere. J. Math. Pures Appl., 81, 2002, 983-997. Zbl1042.53025MR1946912DOI10.1016/S0021-7824(01)01249-1
- ROTHSCHILD, L.P. - STEIN, E.M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
- SLODKOWSKI, Z. - TOMASSINI, G., Weak solutions for the Levi equation and envelope of holomorphy. J. Funct. Anal., 101, 1991, 392-407. Zbl0744.35015MR1136942DOI10.1016/0022-1236(91)90164-Z
- SLODKOWSKI, Z. - TOMASSINI, G., The Levi equation in higher dimension and relationships to the envelope of holomorphy. Amer. J. of Math., 116, 1994, 392-407. Zbl0802.35050MR1269612DOI10.2307/2374937
- WEYL, H., The method of the orthogonal projection in Potential Theory. Duke Math. J., 7, 1940, 411-444. MR3331JFM66.0444.01