Nonlinear equations on Carnot groups and curvature problems for CR manifolds

Ermanno Lanconelli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 3, page 227-238
  • ISSN: 1120-6330

Abstract

top
We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for C R manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the C R sphere and of the Levi-curvature equation for strictly pseudoconvex functions.

How to cite

top

Lanconelli, Ermanno. "Nonlinear equations on Carnot groups and curvature problems for CR manifolds." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.3 (2003): 227-238. <http://eudml.org/doc/252356>.

@article{Lanconelli2003,
abstract = {We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for $CR$ manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the $CR$ sphere and of the Levi-curvature equation for strictly pseudoconvex functions.},
author = {Lanconelli, Ermanno},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hypoellipticity; Carnot groups; Sub-Laplacians; Webster-Tanaka curvature; Levi-curvature; hypoellipticity; sub-Laplacians},
language = {eng},
month = {9},
number = {3},
pages = {227-238},
publisher = {Accademia Nazionale dei Lincei},
title = {Nonlinear equations on Carnot groups and curvature problems for CR manifolds},
url = {http://eudml.org/doc/252356},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Lanconelli, Ermanno
TI - Nonlinear equations on Carnot groups and curvature problems for CR manifolds
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/9//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 3
SP - 227
EP - 238
AB - We give a short overview of sub-Laplacians on Carnot groups starting from a result by Caccioppoli dated 1934. Then we show that sub-Laplacians on Carnot groups of step one arise in studying curvature problems for $CR$ manifolds. We restrict our presentation to the cases of the Webster-Tanaka curvature problem for the $CR$ sphere and of the Levi-curvature equation for strictly pseudoconvex functions.
LA - eng
KW - Hypoellipticity; Carnot groups; Sub-Laplacians; Webster-Tanaka curvature; Levi-curvature; hypoellipticity; sub-Laplacians
UR - http://eudml.org/doc/252356
ER -

References

top
  1. AMBROSETTI, A. - BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 233-252. Zbl1004.37043MR1614571DOI10.1016/S0294-1449(97)89300-6
  2. BEDFORD, E. - GAVEAU, B., Hypersurfaces with bounded Levi form. Ind. Univ. Math. J., 27, 1978, 867-877. Zbl0365.32011MR499287
  3. CACCIOPPOLI, R., Sui teoremi di esistenza di Riemann. Rend. Acc. Sc. Napoli, 4, 1934, 49-54. Zbl0010.16804JFM60.0310.06
  4. CITTI, G., C -regularity of solutions of the Levi equation. Ann. Inst. Henry Poincaré, Analyse non Linéaire, 15, 1998, 517-534. Zbl0921.35033MR1632929DOI10.1016/S0294-1449(98)80033-4
  5. CITTI, G. - LANCONELLI, E. - MONTANARI, A., Smoothness of Lipschitz-continuous graphs with non-vanishing Levi curvature. Acta Math., 118, 2002, 87-128. Zbl1030.35084MR1947459DOI10.1007/BF02392796
  6. FOLLAND, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Math., 13, 1975, 161-207. Zbl0312.35026MR494315
  7. GALLARDO, L., Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur le groups de Lie nilpotents. Proc. VII Oberwolfach Conference on Probability measures on groups. Lectures Notes in Math., 928, Springer-Verlag, Berlin-New York1982, 96-120. Zbl0483.60072MR669065
  8. GAMARA, N., The C R Yamabe conjecture: the case n = 1 . J. Eur. Math. Soc., 3, 2001, 105-137. Zbl0988.53013MR1831872DOI10.1007/PL00011303
  9. GAMARA, N. - YACOUB, R., C R Yamabe conjecture: the conformally flat case. Pacific J. of Math., 201, 2001, 121-175. Zbl1054.32020MR1867895DOI10.2140/pjm.2001.201.121
  10. HEBEY, E., Changement de métriques conformes sur la sphére. Le problème de Nirenberg. Bull. Sc. Math., 114, 1990, 215-242. Zbl0713.53023MR1056162
  11. HORMANDER, L., Hypoelliptic second order differential equations. Acta Math., 119, 1967, 147-171. Zbl0156.10701MR222474
  12. JERISON, D. - LEE, J.M., Intrinsic C R normal coordinates and the C R Yamabe problem. J. Amer. Math. Soc., 1, 1988, 1-13. Zbl0634.32016MR982177
  13. JERISON, D. - LEE, J.M., Extremals of the Sobolev inequality on the Heisenberg group and the C R Yamabe problem. J. of Diff. Geom., 29, 1989, 303-343. Zbl0671.32016MR924699DOI10.2307/1990964
  14. KOHN, J.J. - NIRENBERG, L., A pseudoconvex domain not admitting a holomorphic support function. Math. Ann., 201, 1973, 265-268. Zbl0248.32013MR330513
  15. KOLMOGOROV, A., Zufällige Bewegungen. Ann. of Math., 35, 1934, 116-117. Zbl0008.39906MR1503147JFM60.1159.01
  16. LASCIALFARI, F. - MONTANARI, A., Smooth regularity for solutions of the Levi Monge-Ampère equations. Rend. Mat. Acc. Lincei, s. 9, v. 12, 2001, 1633-1664. Zbl1019.35056MR1898454
  17. LEVI, E.E., Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Ann. di Mat. Pura ed Appl., 17, 1910, 61-87. JFM41.0487.01
  18. LEVI, E.E., Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiere del campo di esistenza di una funzione analitica di due variabili complesse. Ann. di Mat. Pura ed Appl., 18, 1911, 69-79. JFM42.0449.02
  19. MONTANARI, A. - LANCONELLI, E., Strong comparison principle for symmetric functions in the eigenvalues of the Levi form. Preprint. 
  20. MALCHIODI, A. - UGUZZONI, F., A perturbation result for the Webster scalar curvature problem on the C R sphere. J. Math. Pures Appl., 81, 2002, 983-997. Zbl1042.53025MR1946912DOI10.1016/S0021-7824(01)01249-1
  21. ROTHSCHILD, L.P. - STEIN, E.M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. Zbl0346.35030MR436223
  22. SLODKOWSKI, Z. - TOMASSINI, G., Weak solutions for the Levi equation and envelope of holomorphy. J. Funct. Anal., 101, 1991, 392-407. Zbl0744.35015MR1136942DOI10.1016/0022-1236(91)90164-Z
  23. SLODKOWSKI, Z. - TOMASSINI, G., The Levi equation in higher dimension and relationships to the envelope of holomorphy. Amer. J. of Math., 116, 1994, 392-407. Zbl0802.35050MR1269612DOI10.2307/2374937
  24. WEYL, H., The method of the orthogonal projection in Potential Theory. Duke Math. J., 7, 1940, 411-444. MR3331JFM66.0444.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.