The BV-energy of maps into a manifold : relaxation and density results

Mariano Giaquinta; Domenico Mucci

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 4, page 483-548
  • ISSN: 0391-173X

Abstract

top
Let  𝒴   be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its 1 -homology group has notorsion. Weak limits of graphs of smooth maps  u k : B n 𝒴   with equibounded total variation give riseto equivalence classes of cartesian currents in  cart 1 , 1 ( B n 𝒴 )   for which we introduce a natural B V -energy.Assume moreover that the first homotopy group of   𝒴   iscommutative. In any dimension   n   we prove that every element  T   in   cart 1 , 1 ( B n 𝒴 )   can be approximatedweakly in the sense of currents by a sequence of graphs of smoothmaps   u k : B n 𝒴   with total variation converging to the B V -energy of   T . As a consequence, we characterize the lowersemicontinuous envelope of functions of bounded variations from B n into 𝒴 .

How to cite

top

Giaquinta, Mariano, and Mucci, Domenico. "The BV-energy of maps into a manifold : relaxation and density results." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 483-548. <http://eudml.org/doc/242253>.

@article{Giaquinta2006,
abstract = {Let $\{\mathcal \{Y\}\}$  be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its $1$-homology group has notorsion. Weak limits of graphs of smooth maps $u_k:B^n\rightarrow \{\mathcal \{Y\}\}$  with equibounded total variation give riseto equivalence classes of cartesian currents in $\mathop \{\rm cart\}\nolimits ^\{1,1\}(B^n\{\mathcal \{Y\}\})$  for which we introduce a natural$BV$-energy.Assume moreover that the first homotopy group of  $\{\mathcal \{Y\}\}$  iscommutative. In any dimension  $n$  we prove that every element $T$  in  $\mathop \{\rm cart\}\nolimits ^\{1,1\}(B^n\{\mathcal \{Y\}\})$  can be approximatedweakly in the sense of currents by a sequence of graphs of smoothmaps  $u_k:B^n\rightarrow \{\mathcal \{Y\}\}$  with total variation converging to the$BV$-energy of  $T$. As a consequence, we characterize the lowersemicontinuous envelope of functions of bounded variations from$B^n$ into $\{\mathcal \{Y\}\}$.},
author = {Giaquinta, Mariano, Mucci, Domenico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {smooth compact Riemannian manifolds; weak limit; Cartesian currents},
language = {eng},
number = {4},
pages = {483-548},
publisher = {Scuola Normale Superiore, Pisa},
title = {The BV-energy of maps into a manifold : relaxation and density results},
url = {http://eudml.org/doc/242253},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Giaquinta, Mariano
AU - Mucci, Domenico
TI - The BV-energy of maps into a manifold : relaxation and density results
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 483
EP - 548
AB - Let ${\mathcal {Y}}$  be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its $1$-homology group has notorsion. Weak limits of graphs of smooth maps $u_k:B^n\rightarrow {\mathcal {Y}}$  with equibounded total variation give riseto equivalence classes of cartesian currents in $\mathop {\rm cart}\nolimits ^{1,1}(B^n{\mathcal {Y}})$  for which we introduce a natural$BV$-energy.Assume moreover that the first homotopy group of  ${\mathcal {Y}}$  iscommutative. In any dimension  $n$  we prove that every element $T$  in  $\mathop {\rm cart}\nolimits ^{1,1}(B^n{\mathcal {Y}})$  can be approximatedweakly in the sense of currents by a sequence of graphs of smoothmaps  $u_k:B^n\rightarrow {\mathcal {Y}}$  with total variation converging to the$BV$-energy of  $T$. As a consequence, we characterize the lowersemicontinuous envelope of functions of bounded variations from$B^n$ into ${\mathcal {Y}}$.
LA - eng
KW - smooth compact Riemannian manifolds; weak limit; Cartesian currents
UR - http://eudml.org/doc/242253
ER -

References

top
  1. [1] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 439–478. Zbl0724.49027MR1079985
  2. [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of bounded Variation and Free Discontinuity Problems”, Oxford Math. Monographs, Oxford, 2000. Zbl0957.49001MR1857292
  3. [3] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. Zbl0984.49025MR1794185
  4. [4] P. Aviles and Y. Giga, Variational integrals of mappings of bounded variation and their lower semicontinuity, Arch. Ration. Mech. Anal. 115 (1991), 201–255. Zbl0737.49011MR1106293
  5. [5] F. Bethuel, The approximation problem for Sobolev maps between manifolds, Acta Math. 167 (1992), 153–206. Zbl0756.46017MR1120602
  6. [6] F. Bethuel, J. M. Coron, F. Demengel and F. Helein, A cohomological criterium for density of smooth maps in Sobolev spaces between two manifolds, In: “Nematics, Mathematical and Physical Aspects”, J. M. Coron, J. M. Ghidaglia, F. Helein (eds.), NATO ASI Series C, 332, Kluwer Academic Publishers, Dordrecht, 1991, 15–23. Zbl0735.46017MR1178081
  7. [7] G. Bouchitté and G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal. 15 (1990), 679–692. Zbl0736.49007MR1073958
  8. [8] H. Brezis, P. Mironescu and A. Ponce, W 1 , 1 -maps with value into S 1 , In: “Geometric Analysis of PDE and Several Complex Variables”, S. Chanillo, P. Cordaro, N. Hanges and A. Meziani (eds.), Contemporary Mathematics, 368, American Mathematical Society, Providence, RI, 2005, 69–100. Zbl1078.46020MR2126464
  9. [9] H. Federer, “Geometric Measure Theory”, Grundlehren math. Wissen. 153, Springer, Berlin, 1969. Zbl0176.00801MR257325
  10. [10] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351–407. Zbl0289.49044MR348598
  11. [11] E. Gagliardo, Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305. Zbl0087.10902MR102739
  12. [12] M. Giaquinta and G. Modica, On sequences of maps with equibounded energies, Calc. Var. Partial Differential Equations 12 (2001), 213–222. Zbl1013.49030MR1825872
  13. [13] M. Giaquinta, G. Modica and J. Souček, Variational problems for maps of bounded variations with values in S 1 , Calc. Var. 1 (1993), 87–121. Zbl0810.49040MR1261719
  14. [14] M. Giaquinta, G. Modica and J. Souček, “Cartesian Currents in the Calculus of Variations”, I, II. Ergebnisse Math. Grenzgebiete (III Ser), 37, 38, Springer, Berlin, 1998. Zbl0914.49001MR1645086
  15. [15] M. Giaquinta and D. Mucci, Weak and strong density results for the Dirichlet energy, J. Eur. Math. Soc. 6 (2004), 95–117. Zbl1043.49040MR2041007
  16. [16] M. Giaquinta and D. Mucci, The Dirichlet energy of mappings from B 3 into a manifold: density results and gap phenomenon, Calc. Var. Partial Differential Equations 20 (2004), 367–397. Zbl1055.49030MR2071926
  17. [17] M. Giaquinta and D. Mucci, On sequences of maps into a manifold with equibounded W 1 / 2 -energies, J. Funct. Anal. 225 (2005), 94–146. Zbl1084.46024MR2149920
  18. [18] B. Hardt and J. Pitts, Solving the Plateau’s problem for hypersurfaces without the compactness theorem for integral currents, In: “Geometric Measure Theory and the Calculus of Variations”, W. K. Allard and F. J. Almgren (eds.), Proc. Symp. Pure Math. 44. Amer. Math. Soc., Providence, 1996, 255–295. Zbl0598.49028MR840278
  19. [19] R. Ignat, The space B V ( S 2 ; S 1 ) : minimal connections and optimal liftings Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283–302. Zbl1083.49030MR2136245
  20. [20] M. R. Pakzad and T. Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2001), 223–257. Zbl1028.58008MR1978496
  21. [21] R. Schoen and K Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253–268. Zbl0547.58020MR710054
  22. [22] L. Simon, “Lectures on geometric measure theory”, Proc. C.M.A., Vol. 3, Australian Natl. Univ., Canberra, 1983. Zbl0546.49019MR756417
  23. [23] B. White, Rectifiability of flat chains, Ann. of Math. (2) 150 (1999), 165–184. Zbl0965.49024MR1715323

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.