The BV-energy of maps into a manifold : relaxation and density results
Mariano Giaquinta; Domenico Mucci
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 4, page 483-548
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topGiaquinta, Mariano, and Mucci, Domenico. "The BV-energy of maps into a manifold : relaxation and density results." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 483-548. <http://eudml.org/doc/242253>.
@article{Giaquinta2006,
abstract = {Let $\{\mathcal \{Y\}\}$ be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its $1$-homology group has notorsion. Weak limits of graphs of smooth maps $u_k:B^n\rightarrow \{\mathcal \{Y\}\}$ with equibounded total variation give riseto equivalence classes of cartesian currents in $\mathop \{\rm cart\}\nolimits ^\{1,1\}(B^n\{\mathcal \{Y\}\})$ for which we introduce a natural$BV$-energy.Assume moreover that the first homotopy group of $\{\mathcal \{Y\}\}$ iscommutative. In any dimension $n$ we prove that every element $T$ in $\mathop \{\rm cart\}\nolimits ^\{1,1\}(B^n\{\mathcal \{Y\}\})$ can be approximatedweakly in the sense of currents by a sequence of graphs of smoothmaps $u_k:B^n\rightarrow \{\mathcal \{Y\}\}$ with total variation converging to the$BV$-energy of $T$. As a consequence, we characterize the lowersemicontinuous envelope of functions of bounded variations from$B^n$ into $\{\mathcal \{Y\}\}$.},
author = {Giaquinta, Mariano, Mucci, Domenico},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {smooth compact Riemannian manifolds; weak limit; Cartesian currents},
language = {eng},
number = {4},
pages = {483-548},
publisher = {Scuola Normale Superiore, Pisa},
title = {The BV-energy of maps into a manifold : relaxation and density results},
url = {http://eudml.org/doc/242253},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Giaquinta, Mariano
AU - Mucci, Domenico
TI - The BV-energy of maps into a manifold : relaxation and density results
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 483
EP - 548
AB - Let ${\mathcal {Y}}$ be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its $1$-homology group has notorsion. Weak limits of graphs of smooth maps $u_k:B^n\rightarrow {\mathcal {Y}}$ with equibounded total variation give riseto equivalence classes of cartesian currents in $\mathop {\rm cart}\nolimits ^{1,1}(B^n{\mathcal {Y}})$ for which we introduce a natural$BV$-energy.Assume moreover that the first homotopy group of ${\mathcal {Y}}$ iscommutative. In any dimension $n$ we prove that every element $T$ in $\mathop {\rm cart}\nolimits ^{1,1}(B^n{\mathcal {Y}})$ can be approximatedweakly in the sense of currents by a sequence of graphs of smoothmaps $u_k:B^n\rightarrow {\mathcal {Y}}$ with total variation converging to the$BV$-energy of $T$. As a consequence, we characterize the lowersemicontinuous envelope of functions of bounded variations from$B^n$ into ${\mathcal {Y}}$.
LA - eng
KW - smooth compact Riemannian manifolds; weak limit; Cartesian currents
UR - http://eudml.org/doc/242253
ER -
References
top- [1] L. Ambrosio, Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 439–478. Zbl0724.49027MR1079985
- [2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of bounded Variation and Free Discontinuity Problems”, Oxford Math. Monographs, Oxford, 2000. Zbl0957.49001MR1857292
- [3] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. Zbl0984.49025MR1794185
- [4] P. Aviles and Y. Giga, Variational integrals of mappings of bounded variation and their lower semicontinuity, Arch. Ration. Mech. Anal. 115 (1991), 201–255. Zbl0737.49011MR1106293
- [5] F. Bethuel, The approximation problem for Sobolev maps between manifolds, Acta Math. 167 (1992), 153–206. Zbl0756.46017MR1120602
- [6] F. Bethuel, J. M. Coron, F. Demengel and F. Helein, A cohomological criterium for density of smooth maps in Sobolev spaces between two manifolds, In: “Nematics, Mathematical and Physical Aspects”, J. M. Coron, J. M. Ghidaglia, F. Helein (eds.), NATO ASI Series C, 332, Kluwer Academic Publishers, Dordrecht, 1991, 15–23. Zbl0735.46017MR1178081
- [7] G. Bouchitté and G. Buttazzo, New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal. 15 (1990), 679–692. Zbl0736.49007MR1073958
- [8] H. Brezis, P. Mironescu and A. Ponce, -maps with value into , In: “Geometric Analysis of PDE and Several Complex Variables”, S. Chanillo, P. Cordaro, N. Hanges and A. Meziani (eds.), Contemporary Mathematics, 368, American Mathematical Society, Providence, RI, 2005, 69–100. Zbl1078.46020MR2126464
- [9] H. Federer, “Geometric Measure Theory”, Grundlehren math. Wissen. 153, Springer, Berlin, 1969. Zbl0176.00801MR257325
- [10] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351–407. Zbl0289.49044MR348598
- [11] E. Gagliardo, Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284–305. Zbl0087.10902MR102739
- [12] M. Giaquinta and G. Modica, On sequences of maps with equibounded energies, Calc. Var. Partial Differential Equations 12 (2001), 213–222. Zbl1013.49030MR1825872
- [13] M. Giaquinta, G. Modica and J. Souček, Variational problems for maps of bounded variations with values in , Calc. Var. 1 (1993), 87–121. Zbl0810.49040MR1261719
- [14] M. Giaquinta, G. Modica and J. Souček, “Cartesian Currents in the Calculus of Variations”, I, II. Ergebnisse Math. Grenzgebiete (III Ser), 37, 38, Springer, Berlin, 1998. Zbl0914.49001MR1645086
- [15] M. Giaquinta and D. Mucci, Weak and strong density results for the Dirichlet energy, J. Eur. Math. Soc. 6 (2004), 95–117. Zbl1043.49040MR2041007
- [16] M. Giaquinta and D. Mucci, The Dirichlet energy of mappings from into a manifold: density results and gap phenomenon, Calc. Var. Partial Differential Equations 20 (2004), 367–397. Zbl1055.49030MR2071926
- [17] M. Giaquinta and D. Mucci, On sequences of maps into a manifold with equibounded -energies, J. Funct. Anal. 225 (2005), 94–146. Zbl1084.46024MR2149920
- [18] B. Hardt and J. Pitts, Solving the Plateau’s problem for hypersurfaces without the compactness theorem for integral currents, In: “Geometric Measure Theory and the Calculus of Variations”, W. K. Allard and F. J. Almgren (eds.), Proc. Symp. Pure Math. 44. Amer. Math. Soc., Providence, 1996, 255–295. Zbl0598.49028MR840278
- [19] R. Ignat, The space : minimal connections and optimal liftings Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283–302. Zbl1083.49030MR2136245
- [20] M. R. Pakzad and T. Rivière, Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2001), 223–257. Zbl1028.58008MR1978496
- [21] R. Schoen and K Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253–268. Zbl0547.58020MR710054
- [22] L. Simon, “Lectures on geometric measure theory”, Proc. C.M.A., Vol. 3, Australian Natl. Univ., Canberra, 1983. Zbl0546.49019MR756417
- [23] B. White, Rectifiability of flat chains, Ann. of Math. (2) 150 (1999), 165–184. Zbl0965.49024MR1715323
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.