Displaying similar documents to “The BV-energy of maps into a manifold : relaxation and density results”

Connecting topological Hopf singularities

Robert Hardt, Tristan Rivière (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Smooth maps between riemannian manifolds are often not strongly dense in Sobolev classes of finite energy maps, and an energy drop in a limiting sequence of smooth maps often is accompanied by the production (or bubbling) of an associated rectifiable current. For finite 2-energy maps from the 3 ball to the 2 sphere, this phenomenon has been well-studied in works of Bethuel-Brezis-Coron and Giaquinta-Modica-Soucek where a finite mass 1 dimensional rectifiable current occurs whose boundary...

A new proof of the rectifiable slices theorem

Robert L. Jerrard (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

This paper gives a new proof of the fact that a k -dimensional normal current T in m is integer multiplicity rectifiable if and only if for every projection P onto a k -dimensional subspace, almost every slice of T by P is 0 -dimensional integer multiplicity rectifiable, in other words, a sum of Dirac masses with integer weights. This is a special case of the Rectifiable Slices Theorem, which was first proved a few years ago by B. White.