Almost sure absolute continuity of Bernoulli convolutions

Michael Björklund; Daniel Schnellmann

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 3, page 888-893
  • ISSN: 0246-0203

Abstract

top
We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.

How to cite

top

Björklund, Michael, and Schnellmann, Daniel. "Almost sure absolute continuity of Bernoulli convolutions." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 888-893. <http://eudml.org/doc/242613>.

@article{Björklund2010,
abstract = {We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.},
author = {Björklund, Michael, Schnellmann, Daniel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Bernoulli convolutions; absolute continuity},
language = {eng},
number = {3},
pages = {888-893},
publisher = {Gauthier-Villars},
title = {Almost sure absolute continuity of Bernoulli convolutions},
url = {http://eudml.org/doc/242613},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Björklund, Michael
AU - Schnellmann, Daniel
TI - Almost sure absolute continuity of Bernoulli convolutions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 888
EP - 893
AB - We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.
LA - eng
KW - Bernoulli convolutions; absolute continuity
UR - http://eudml.org/doc/242613
ER -

References

top
  1. [1] B. Jessen and A. Wintner. Distribution functions and the Riemann Zeta function. Trans. Amer. Math. Soc. 38 (1935) 48–88. Zbl0014.15401MR1501802JFM61.0462.03
  2. [2] R. Kershner and A. Wintner. On symmetric Bernoulli convolutions. Amer. J. Math. 57 (1935) 541–548. Zbl0012.06302MR1507093JFM61.0464.02
  3. [3] Y. Peres and B. Solomyak. Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3 (1996) 231–239. Zbl0867.28001MR1386842
  4. [4] B. Solomyak. On the random series ∑±λn (an Erdös problem). Ann. of Math. (2) 142 (1995) 611–625. Zbl0837.28007MR1356783
  5. [5] A. Wintner. On analytic convolutions of Bernoulli distributions. Amer. J. Math. 56 (1934) 659–663. Zbl0010.05905MR1507049
  6. [6] A. Wintner. On symmetric Bernoulli convolutions. Bull. Amer. Math. Soc. 41 (1935) 137–138. Zbl61.0464.01MR1563036JFM61.0464.01
  7. [7] A. Wintner. On convergent Poisson convolutions. Amer. J. Math. 57 (1935) 827–838. Zbl61.0465.02MR1507116JFM61.0465.02

NotesEmbed ?

top

You must be logged in to post comments.