Almost sure absolute continuity of Bernoulli convolutions

Michael Björklund; Daniel Schnellmann

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 3, page 888-893
  • ISSN: 0246-0203

Abstract

top
We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.

How to cite

top

Björklund, Michael, and Schnellmann, Daniel. "Almost sure absolute continuity of Bernoulli convolutions." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 888-893. <http://eudml.org/doc/242613>.

@article{Björklund2010,
abstract = {We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.},
author = {Björklund, Michael, Schnellmann, Daniel},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Bernoulli convolutions; absolute continuity},
language = {eng},
number = {3},
pages = {888-893},
publisher = {Gauthier-Villars},
title = {Almost sure absolute continuity of Bernoulli convolutions},
url = {http://eudml.org/doc/242613},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Björklund, Michael
AU - Schnellmann, Daniel
TI - Almost sure absolute continuity of Bernoulli convolutions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 888
EP - 893
AB - We prove an extension of a result by Peres and Solomyak on almost sure absolute continuity in a class of symmetric Bernoulli convolutions.
LA - eng
KW - Bernoulli convolutions; absolute continuity
UR - http://eudml.org/doc/242613
ER -

References

top
  1. [1] B. Jessen and A. Wintner. Distribution functions and the Riemann Zeta function. Trans. Amer. Math. Soc. 38 (1935) 48–88. Zbl0014.15401MR1501802JFM61.0462.03
  2. [2] R. Kershner and A. Wintner. On symmetric Bernoulli convolutions. Amer. J. Math. 57 (1935) 541–548. Zbl0012.06302MR1507093JFM61.0464.02
  3. [3] Y. Peres and B. Solomyak. Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3 (1996) 231–239. Zbl0867.28001MR1386842
  4. [4] B. Solomyak. On the random series ∑±λn (an Erdös problem). Ann. of Math. (2) 142 (1995) 611–625. Zbl0837.28007MR1356783
  5. [5] A. Wintner. On analytic convolutions of Bernoulli distributions. Amer. J. Math. 56 (1934) 659–663. Zbl0010.05905MR1507049
  6. [6] A. Wintner. On symmetric Bernoulli convolutions. Bull. Amer. Math. Soc. 41 (1935) 137–138. Zbl61.0464.01MR1563036JFM61.0464.01
  7. [7] A. Wintner. On convergent Poisson convolutions. Amer. J. Math. 57 (1935) 827–838. Zbl61.0465.02MR1507116JFM61.0465.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.