Almost sure absolute continuity of Bernoulli convolutions
Michael Björklund; Daniel Schnellmann
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 888-893
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Jessen and A. Wintner. Distribution functions and the Riemann Zeta function. Trans. Amer. Math. Soc. 38 (1935) 48–88. Zbl0014.15401MR1501802JFM61.0462.03
- [2] R. Kershner and A. Wintner. On symmetric Bernoulli convolutions. Amer. J. Math. 57 (1935) 541–548. Zbl0012.06302MR1507093JFM61.0464.02
- [3] Y. Peres and B. Solomyak. Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3 (1996) 231–239. Zbl0867.28001MR1386842
- [4] B. Solomyak. On the random series ∑±λn (an Erdös problem). Ann. of Math. (2) 142 (1995) 611–625. Zbl0837.28007MR1356783
- [5] A. Wintner. On analytic convolutions of Bernoulli distributions. Amer. J. Math. 56 (1934) 659–663. Zbl0010.05905MR1507049
- [6] A. Wintner. On symmetric Bernoulli convolutions. Bull. Amer. Math. Soc. 41 (1935) 137–138. Zbl61.0464.01MR1563036JFM61.0464.01
- [7] A. Wintner. On convergent Poisson convolutions. Amer. J. Math. 57 (1935) 827–838. Zbl61.0465.02MR1507116JFM61.0465.02