Some remarks on uniqueness and regularity of Cheeger sets

V. Caselles; M. Novaga; A. Chambolle

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 191-202
  • ISSN: 0041-8994

How to cite

top

Caselles, V., Novaga, M., and Chambolle, A.. "Some remarks on uniqueness and regularity of Cheeger sets." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 191-202. <http://eudml.org/doc/242646>.

@article{Caselles2010,
author = {Caselles, V., Novaga, M., Chambolle, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {maximal and minimal Cheeger sets; regularity of Cheeger sets; Cheeger set},
language = {eng},
pages = {191-202},
publisher = {Seminario Matematico of the University of Padua},
title = {Some remarks on uniqueness and regularity of Cheeger sets},
url = {http://eudml.org/doc/242646},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Caselles, V.
AU - Novaga, M.
AU - Chambolle, A.
TI - Some remarks on uniqueness and regularity of Cheeger sets
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 191
EP - 202
LA - eng
KW - maximal and minimal Cheeger sets; regularity of Cheeger sets; Cheeger set
UR - http://eudml.org/doc/242646
ER -

References

top
  1. [1] F. Alter - V. Caselles, Uniqueness of the Cheeger set of a convex body. To appear in Nonlinear Analysis, TMA. Zbl1167.52005MR2468216
  2. [2] F. Alter - V. Caselles - A. Chambolle, Evolution of Convex Sets in the Plane by the Minimizing Total Variation Flow, Interfaces and Free Boundaries, 7 (2005), pp. 29--53. Zbl1084.49003MR2126142
  3. [3] F. Alter - V. Caselles - A. Chambolle, A characterization of convex calibrable sets in N , Math. Ann., 332 (2005), pp. 329--366. Zbl1108.35073MR2178065
  4. [4] L. Ambrosio, Corso introduttivo alla teoria geometrica della misura ed alle superfici minime, Scuola Normale Superiore, Pisa, 1997. Zbl0977.49028MR1736268
  5. [5] L. Ambrosio - N. Fusco - D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 2000. Zbl0957.49001MR1857292
  6. [6] G. Bellettini - V. Caselles - M. Novaga, The Total Variation Flow in N , J. Differential Equations, 184 (2002), pp. 475--525. Zbl1036.35099MR1929886
  7. [7] G. Buttazzo - G. Carlier - M. Comte, On the selection of maximal Cheeger sets, Differential and Integral Equations, 20 (9) (2007), pp. 991--1004. Zbl1212.49019MR2349376
  8. [8] E. Barozzi - U. Massari, Regularity of minimal boundaries with obstacles, Rend. Sem. Mat. Univ. Padova, 66 (1982), pp. 129--135. Zbl0494.49030MR664576
  9. [9] L. A. Caffarelli, The obstacle problem revisited, The Journal of Fourier Analysis and Applications, 4 (1998), pp. 383--402. Zbl0928.49030MR1658612
  10. [10] L. A. Caffarelli - N. M. Riviere, On the rectifiability of domains with finite perimeter, Ann. Scuola Normale Superiore di Pisa, 3 (1976), pp. 177--186. Zbl0362.49031MR410539
  11. [11] G. Carlier - M. Comte, On a weighted total variation minimization problem, J. Funct. Anal., 250 (2007), pp. 214--226. Zbl1120.49011MR2345913
  12. [12] G. Carlier - M. Comte - G. Peyré, Approximation of maximal Cheeger sets by projection, Preprint (2007). Zbl1161.65046MR2494797
  13. [13] V. Caselles - A. Chambolle - M. Novaga, Uniqueness of the Cheeger set of a convex body, Pacific Journal of Mathematics, 232 (1) (2007), pp. 77--90. Zbl1221.35171MR2358032
  14. [14] A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), pp. 89--97. MR2049783
  15. [15] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, Princeton Univ. Press, Princeton (New Jersey, 1970), pp. 195--199. Zbl0212.44903MR402831
  16. [16] D. Gilbarg - N. S. Trudinger, Elliptic partial Differential Equations of Second Order, Springer Verlag, 1998. Zbl1042.35002
  17. [17] E. Giusti, On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), pp. 111--137. Zbl0381.35035MR487722
  18. [18] E. H. A. Gonzalez - U. Massari - I. Tamanini, Minimal boundaries enclosing a given volume, Manuscripta Math., 34 (1981), pp. 381--395. Zbl0481.49035MR620458
  19. [19] E. Gonzalez - U. Massari - I. Tamanini, On the regularity of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. Journal, 32 (1983), pp. 25--37. Zbl0486.49024MR684753
  20. [20] D. Grieser, The first eigenvalue of the Laplacian, isoperimetric constants, and the max-flow min-cut theorem, Arch. Math., 87 (1) (2006), pp. 75--85. Zbl1105.35062MR2246409
  21. [21] L. Lefton - D. Wei, Numerical approximation of the first eigenpair of the p-laplacian using finite elements and the penalty method, Numer. Funct. Anal. Optim., 18 (3-4) (1997), pp. 389--399. Zbl0884.65103MR1448898
  22. [22] B. Kawohl - V. Fridman, Isoperimetric estimates for the first eigenvalue of the p -Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae, 44 (2003), pp. 659--667. Zbl1105.35029MR2062882
  23. [23] B. Kawohl, T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., 225 (1) (2006), pp. 103--118. Zbl1133.52002MR2233727
  24. [24] B. Kawohl - M. Novaga, The p -Laplace eigenvalue problem as p 1 and Cheeger sets in a Finsler metric, J. Convex Anal., 15 (3) (2008), pp. 623--634. Zbl1186.35115MR2431415
  25. [25] U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in n , Arch. Rat. Mech. Anal., 55 (1974), pp. 357--382. Zbl0305.49047MR355766
  26. [26] P. Marcellini - K. Miller, Asymptotic growth for the parabolic equation of prescribed mean curvature, J. Differential Equations, 51 (3) (1984), pp. 326--358. Zbl0545.35044MR735204
  27. [27] G. Strang, Maximal flow through a domain, Math. Programming, 26 (2) (1983), pp. 123--143. Zbl0513.90026MR700642
  28. [28] E. Stredulinsky - W. P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal., 7 (1997), pp. 653--677. Zbl0940.49025MR1669207
  29. [29] J. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. in Partial Differential Equations, 2 (1977), 323--357. Zbl0357.35010MR487721

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.