Anisotropic mean curvature on facets and relations with capillarity

Stefano Amato; Giovanni Bellettini; Lucia Tealdi

Geometric Flows (2015)

  • Volume: 1, Issue: 1
  • ISSN: 2353-3382

Abstract

top
Given an anisotropy ɸ on R3, we discuss the relations between the ɸ-calibrability of a facet F ⊂ ∂E of a solid crystal E, and the capillary problem on a capillary tube with base F. When F is parallel to a facet ̃︀ BFɸ of the unit ball of ɸ, ɸ-calibrability is equivalent to show the existence of a ɸ-subunitary vector field in F, with suitable normal trace on @F, and with constant divergence equal to the ɸ-mean curvature of F. Assuming E convex at F, ̃︀ BFɸ a disk, and F (strictly) ɸ-calibrable, such a vector field is obtained by solving the capillary problem on F in absence of gravity and with zero contact angle. We show some examples of facets for which it is possible, even without the strict ɸ-calibrability assumption, to build one of these vector fields. The construction provides, at least for convex facets of class C1,1, the solution of the total variation flow starting at 1F.

How to cite

top

Stefano Amato, Giovanni Bellettini, and Lucia Tealdi. "Anisotropic mean curvature on facets and relations with capillarity." Geometric Flows 1.1 (2015): null. <http://eudml.org/doc/275884>.

@article{StefanoAmato2015,
abstract = {Given an anisotropy ɸ on R3, we discuss the relations between the ɸ-calibrability of a facet F ⊂ ∂E of a solid crystal E, and the capillary problem on a capillary tube with base F. When F is parallel to a facet ̃︀ BFɸ of the unit ball of ɸ, ɸ-calibrability is equivalent to show the existence of a ɸ-subunitary vector field in F, with suitable normal trace on @F, and with constant divergence equal to the ɸ-mean curvature of F. Assuming E convex at F, ̃︀ BFɸ a disk, and F (strictly) ɸ-calibrable, such a vector field is obtained by solving the capillary problem on F in absence of gravity and with zero contact angle. We show some examples of facets for which it is possible, even without the strict ɸ-calibrability assumption, to build one of these vector fields. The construction provides, at least for convex facets of class C1,1, the solution of the total variation flow starting at 1F.},
author = {Stefano Amato, Giovanni Bellettini, Lucia Tealdi},
journal = {Geometric Flows},
language = {eng},
number = {1},
pages = {null},
title = {Anisotropic mean curvature on facets and relations with capillarity},
url = {http://eudml.org/doc/275884},
volume = {1},
year = {2015},
}

TY - JOUR
AU - Stefano Amato
AU - Giovanni Bellettini
AU - Lucia Tealdi
TI - Anisotropic mean curvature on facets and relations with capillarity
JO - Geometric Flows
PY - 2015
VL - 1
IS - 1
SP - null
AB - Given an anisotropy ɸ on R3, we discuss the relations between the ɸ-calibrability of a facet F ⊂ ∂E of a solid crystal E, and the capillary problem on a capillary tube with base F. When F is parallel to a facet ̃︀ BFɸ of the unit ball of ɸ, ɸ-calibrability is equivalent to show the existence of a ɸ-subunitary vector field in F, with suitable normal trace on @F, and with constant divergence equal to the ɸ-mean curvature of F. Assuming E convex at F, ̃︀ BFɸ a disk, and F (strictly) ɸ-calibrable, such a vector field is obtained by solving the capillary problem on F in absence of gravity and with zero contact angle. We show some examples of facets for which it is possible, even without the strict ɸ-calibrability assumption, to build one of these vector fields. The construction provides, at least for convex facets of class C1,1, the solution of the total variation flow starting at 1F.
LA - eng
UR - http://eudml.org/doc/275884
ER -

References

top
  1. [1] F. J. Almgren, Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints, Mem. Amer. Math. Soc. 4, 1976. Zbl0327.49043
  2. [2] F. J. Almgren, J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies , J. Differential Geom. 42 (1995), 1-22. Zbl0867.58020
  3. [3] F. J. Almgren, J. E. Taylor, and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim. 31 (1993), 387-437. [Crossref] Zbl0783.35002
  4. [4] F. Alter, and V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009) 32-44. 
  5. [5] F. Alter, V. Caselles, and A. Chambolle, A characterization of convex calibrable sets in Rn, Math. Ann. 332 (2005), 329-366. Zbl1108.35073
  6. [6] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Mathematical Monographs, Oxford Univ. Press, Oxford, 2000. Zbl0957.49001
  7. [7] L. Ambrosio, M. Novaga, and E. Paolini. Some regularity results for minimal crystals. ESAIM Control Optim. Calc. Var. 8 (2002), 69-103. Zbl1066.49021
  8. [8] F. Andreu, V. Caselles, J. I. Diaz, and J. M.Mazon, Some qualitative properties of the total variation flow, J. Funct. Anal., 188, (2002), 516-547. Zbl1042.35018
  9. [9] F. Andreu-Vaillo, V. Caselles, and J. M. Mazon, Parabolic quasilinear equations minimizing linear growth functionals, Progr. Math., Birkäuser, Basel, 2004. Zbl1053.35002
  10. [10] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann.Mat. Pura Appl. 135 (1983), 293-318. Zbl0572.46023
  11. [11] G. Anzellotti, Traces of bounded vector fields and the divergence theorem, preprint Dipartimento di Matematica Univ. Trento, 1983. 
  12. [12] G. Bellettini, A numerical approach to a minimum problem with applications in image segmentations, Ann. Univ. Ferrara 36 (1990), 99-111. Zbl0760.49010
  13. [13] G. Bellettini, An introduction to anisotropic and crystallinemean curvature flow, Hokkaido Univ. Tech. Rep. Ser. inMath. 145 (2010), 102-162. 
  14. [14] G. Bellettini, V. Caselles, A. Chambolle, and M. Novaga, The volume preserving crystalline mean curvature flow of convex sets in RN, J. Math. Pures Appliquée 92 (2009), 499-527. Zbl1178.53066
  15. [15] G. Bellettini, V. Caselles, and M. Novaga, The total variation flow in Rn, J. Differential Equations 184 (2002), 475-525. Zbl1036.35099
  16. [16] G. Bellettini, V. Caselles, and M. Novaga, Explicit solutions of the eigenvalue problem −div(Du/|Du|) = u, SIAM J. Math. Anal. 36 (2005), 1095-1129. Zbl1162.35379
  17. [17] G. Bellettini, and L. Mugnai, Anisotropic geometric functionals and gradient flows, Banach Cent. Publ. 86 (2009), 21-43. [Crossref] Zbl1189.53063
  18. [18] G. Bellettini, and M. Novaga, Approximation and comparison for non-smooth anisotropic motion by mean curvature in RN, Math. Mod. Meth. Appl. Sc. 10 (2000), 1-10. [Crossref] Zbl1016.53048
  19. [19] G. Bellettini, M. Novaga, and G. Orlandi, Eventual regularity for the parabolic minimal surface equation, Discrete Contin. Dyn. Syst., to appear. Zbl1334.35093
  20. [20] G. Bellettini, M. Novaga, and M. Paolini, Facet-breaking for three-dimensional crystals evolving by mean curvature, Interfaces Free Bound. 1 (1999), 39-55. Zbl0934.49023
  21. [21] G. Bellettini, M. Novaga, and M. Paolini, Characterization of facet-breaking for nonsmooth mean curvature flow in the convex case, Interfaces Free Bound. 3 (2001), 415-446. Zbl0989.35127
  22. [22] G. Bellettini, M. Novaga, and M. Paolini,Ona crystalline variational problem, part I: first variation and global L1-regularity, Arch. Ration. Mech. Anal. 157 (2001), 165-191. Zbl0976.58016
  23. [23] G. Bellettini, M. Novaga, and M. Paolini, On a crystalline variational problem, part II: BV-regularity and structure of minimizers on facets, Arch. Ration. Mech. Anal. 157 (2001), 193-217. Zbl0976.58017
  24. [24] G. Bellettini, and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, HokkaidoMath. J. 25 (1996), 537-566. Zbl0873.53011
  25. [25] G. Bellettini, and M. Paolini, Numerical simulations of measurements of capillary contact angles, IMA J. Numer. Anal. 16 (1996), 165-178. [Crossref] Zbl0851.76010
  26. [26] G. Bellettini, M. Paolini, and S. Venturini, Some results on surface measures in Calculus of Variations, Ann.Mat. Pura Appl. 170 (1996), 329-359. Zbl0890.49020
  27. [27] G. Bellettini, M. Paolini, and C. Verdi, Ʈ-convergence of discrete approximations to interfaces with prescribed mean curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1 (1990), 317-328. Zbl0721.49038
  28. [28] G. Bellettini, M. Paolini, and C. Verdi, Numerical minimization of geometrical type problems related to calculus of variations, Calcolo 27 (1990), 251-278. [Crossref] Zbl0733.49039
  29. [29] G. Bellettini, M. Paolini, and C. Verdi, Convex approximations of functionals with curvature, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 297-306. Zbl0754.65066
  30. [30] G. Bellettini, M. Paolini, and C. Verdi, Front-tracking and variational methods to approximate interfaces with prescribed mean curvature, “Proc. Numerical Methods for Free Boundary Problems”, Jyväskylä, 1990, (P. Neittaanmäki, ed.), Birkhäuser (1991), 83-92. Zbl0754.65065
  31. [31] G. Bellettini, M. Paolini, and C. Verdi, Numerical minimization of functionals with curvature by convex approximations, “Progress in partial differential equations: calculus of variations, applications”, Pitman Research Notes in Mathematics Series, (C. Bandle, J. Bemelmans, M. Chipot, M. Grüter, and J. Saint Jean Paulin, eds.), Longman Scientific & Technical Harlow 267 (1992), 124-138. Zbl0790.53005
  32. [32] G. Bellettini, M. Paolini, and C. Verdi, Convergence of discrete approximations to sets of prescribed mean curvature, “Free boundary problems involving solids”, Pitman Research Notes in Mathematics Series, (J.M. Chadam, and H. Rasmussen, eds.), Longman Scientific & Technical Harlow, 281 (1993), 164-169. 
  33. [33] J. Berthier, and K. A. Brakke, The Physics of Microdroplets, Wiley, Hoboken (NJ), 2012. Zbl06054911
  34. [34] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies, Amsterdam-London: North-Holland Publishing Comp., 1973. 
  35. [35] A. Briani, A. Chambolle, M. Novaga, and G. Orlandi, On the gradient flow of a one-homogeneous functional, Confluentes Math. 3 (2011), 617-635. Zbl1238.49015
  36. [36] V. Caselles, A. Chambolle, and M. Novaga, Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (2007), 77-90. Zbl1221.35171
  37. [37] V. Caselles, A. Chambolle, S. Moll, and M. Novaga, A characterization of convex calibrable sets in Rn with respect to anisotropic norms, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 803-832. Zbl1144.52002
  38. [38] V. Caselles, A. Chambolle, and M. Novaga, Some remarks on uniqueness and regularity of Cheeger sets, Rend. Semin.Mat. Univ. Padova 123 (2010), 191-201. Zbl1198.49042
  39. [39] V. Caselles, A. Chambolle, and M. Novaga, Regularity for solutions of the total variation denoising problem, Rev. Mat. Iberoamericana 27 (2011), 233-252. [Crossref] Zbl1228.94005
  40. [40] V. Caselles, G. Facciolo, and E. Meinhardt, Anisotropic Cheeger sets and applications, SIAM J. Imaging Sci. 2 (2009), 1211- 1254. Zbl1193.49051
  41. [41] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, “Problems in Analysis, A Symposium in Honor of Salomon Bochner” (R. C. Gunning, ed.), Princeton Univ. Press 625 (1970), 195-199. 
  42. [42] L. Esposito, N. Fusco, and C. Trombetti, A quantitative version of the isoperimetric inequality: the anisotropic case Ann. Scuola Norm. Sup. Pisa 5 (2005), 619-652. Zbl1170.52300
  43. [43] H. Federer, Geometric Measure Theory, Springer – Verlag, Berlin, 1968. 
  44. [44] R. Finn, Equilibrium Capillary Surfaces, Springer – Verlag, New York, 1986. Zbl0583.35002
  45. [45] B. S. Fischer, and R. Finn, Existence theorems and measurement of the capillary contact angle, Zeit. Anal. Anwend. 12 (1993), 405-423. Zbl0782.76015
  46. [46] I. Fonseca, The Wulff theorem revisited, Proc. Roy. London Soc. 432 (1991), 125-145. Zbl0725.49017
  47. [47] I. Fonseca and S Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh 119 (1991), 125-136. Zbl0752.49019
  48. [48] M. H. Giga, Y. Giga, Evolving graphs by singular weighted curvature, Arch. Ration. Mach. Anal. 141 (1998), 117-198. Zbl0896.35069
  49. [49] M. H. Giga, Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mach. Anal. 159 (2001), 295-333. Zbl1004.35075
  50. [50] Y. Giga, M. Paolini, and P. Rybka, On the motion by singular interfacial energy, Japan J. Indust. Appl. Math. 18 (2001), 231-248. [Crossref] Zbl0984.35090
  51. [51] E. Giusti, Boundary value problems for non-parametric surfaces of prescribedmean curvature, Ann. Scuola Norm. Sup. Pisa 3 (1976), 501-548 Zbl0344.35036
  52. [52] E. Giusti, On the equation of surfaces of prescribed mean curvature, Invent. Math. 46 (1978), 111-137. [Crossref] Zbl0381.35035
  53. [53] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Boston-Basel-Stuttgart, Birkhäuser, 1984. Zbl0545.49018
  54. [54] M. T. Hussain, Cheeger sets for unit cube: analytical and numerical solutions for L1 and L2 norms,Master Degree’s Thesis, Massachusetts Institute of Technology, 2008. 
  55. [55] B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math. 225 (2006), 103-118. Zbl1133.52002
  56. [56] B. Kawohl and M. Novaga. The p-Laplace eigenvalue problem as p → 1 and Cheeger sets in a Finsler metric, J. Convex Anal. 15 (2008), 623-634. Zbl1186.35115
  57. [57] D. Krejčiřík and A. Pratelli, The Cheeger constant of curved strips, Pacific J. Math. 254 (2011), 309-333. Zbl1247.28003
  58. [58] G. P. Leonardi and A. Pratelli,Onthe Cheeger sets in strips and non-convex domains, preprint (2014), available for download at http://arxiv.org/abs/1409.1376. 
  59. [59] U. Massari and M. Miranda, Minimal Surfaces of Codimension One, North-Holland Math. Studies, North-Holland, Amsterdam, 1984. 
  60. [60] M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Scuola Norm. Sup. Pisa 3 (1964), 515-542. Zbl0152.24402
  61. [61] M. Miranda, Superfici minime illimitate, Ann. Scuola Norm. Sup. Pisa 4 (1977), 313-322. Zbl0352.49020
  62. [62] S. Moll, The anisotropic total variation flow, Math. Ann. 332 (2005), 177–218. Zbl1109.35061
  63. [63] M. Novaga and E. Paolini, Regularity results for boundaries in R2 with prescribed anisotropic curvature. Ann. Mat. Pura Appl. 184 (2005), 239-261. Zbl1158.49306
  64. [64] M. Paolini, Capillary and calibrability of sets in crystalline mean curvature flow, Oberwolfach Reports 2 (2005), 560-562. 
  65. [65] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259-268. [Crossref] Zbl0780.49028
  66. [66] R. Schoen, L. Simon, and F. J. Almgren, Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals. I, II, Acta Math. 139 (1977), 217–265. Zbl0386.49030
  67. [67] I. Tamanini, Regularity results for almost minimal oriented hypersurfaces in RN , Quad. Dip. Mat. Univ. Salento 1 (1984), 1-92. Zbl1191.35007
  68. [68] J. E. Taylor, Existence and structure of solutions to a class of nonelliptic variational problems, Symposia Mathematica 14 (1974), 499-508. 
  69. [69] J. E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems, Proc. Symp. Pure Math. 27 (1975), 419-427. [Crossref] 
  70. [70] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc. 84 (1978), 568-588. [Crossref] Zbl0392.49022
  71. [71] J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. Symp. Pure Math. 54 (1993), 417-438. [Crossref] Zbl0823.49028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.