On the rectifiability of domains with finite perimeter

L. A. Caffarelli; N. M. Rivière

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)

  • Volume: 3, Issue: 2, page 177-186
  • ISSN: 0391-173X

How to cite

top

Caffarelli, L. A., and Rivière, N. M.. "On the rectifiability of domains with finite perimeter." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.2 (1976): 177-186. <http://eudml.org/doc/83715>.

@article{Caffarelli1976,
author = {Caffarelli, L. A., Rivière, N. M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {177-186},
publisher = {Scuola normale superiore},
title = {On the rectifiability of domains with finite perimeter},
url = {http://eudml.org/doc/83715},
volume = {3},
year = {1976},
}

TY - JOUR
AU - Caffarelli, L. A.
AU - Rivière, N. M.
TI - On the rectifiability of domains with finite perimeter
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 2
SP - 177
EP - 186
LA - eng
UR - http://eudml.org/doc/83715
ER -

References

top
  1. [1] R. Caccioppoli, Misura e iutegrazione sugli insiemi dimensionalmente orientati, Rend. Accad. Lincei, Cl. Sc. fis. mat. nat., Serie VIII, 12, fasc 1, 2 (gen.-feb. 1952), pp. 3-11, 137-146. Zbl0048.03704MR47118
  2. [2] L.A. Caffarelli - N.M. Rivière, Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa, serie IV, 3, pp. 289-310. Zbl0363.35009MR412940
  3. [3] E. De Giorgi, Su una teoria generale della misura (r - 1)-dimensionale in uno spazio ad r dimensioni, Annali di Matematica pura ed applicata, Serie IV, 36 (1954), pp. 191-213. Zbl0055.28504MR62214
  4. [4] E. De Giorgi, Nuovi teoremi relativi alle misure (r - 1)-dimensionale in uno spazio ad r dimensionali, Ricerche di Matematica, 4 (1955), pp. 95-113. Zbl0066.29903MR74499
  5. [5] D. Kinderlehrer, How a minimal surface leaves an obstacle, Acta mathematica, 130 (1973), pp. 221-242. Zbl0268.49050MR419997
  6. [6] H. Lewy, On minimal surfaces with partly free boundary, Comm. Pure Appl. Math., 4 (1951), pp. 1-13. MR52711
  7. [7] H. Lewy - G. Stampacchia, On the regularity of the solution to a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551
  8. [8] A.I. Markushevich, Theory of a complex variable, Vol. III, Prentice-Hall (1967), Part I, Ch. 2. Zbl0148.05201MR215964
  9. [9] A. Zygmund, Trigonometric Series, Cambridge (1959), vol. I, Ch. 7. Zbl0085.05601

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.