Multiple periodic solutions for Hamiltonian systems with singular potential

Addolorata Salvatore

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 2, page 111-119
  • ISSN: 1120-6330

Abstract

top
In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.

How to cite

top

Salvatore, Addolorata. "Multiple periodic solutions for Hamiltonian systems with singular potential." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.2 (1992): 111-119. <http://eudml.org/doc/244227>.

@article{Salvatore1992,
abstract = {In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.},
author = {Salvatore, Addolorata},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Singular Hamiltonian systems; Periodic solutions; Critical points; Hamiltonian system; infinitely many periodic solutions of prescribed period},
language = {eng},
month = {6},
number = {2},
pages = {111-119},
publisher = {Accademia Nazionale dei Lincei},
title = {Multiple periodic solutions for Hamiltonian systems with singular potential},
url = {http://eudml.org/doc/244227},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Salvatore, Addolorata
TI - Multiple periodic solutions for Hamiltonian systems with singular potential
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/6//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 2
SP - 111
EP - 119
AB - In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.
LA - eng
KW - Singular Hamiltonian systems; Periodic solutions; Critical points; Hamiltonian system; infinitely many periodic solutions of prescribed period
UR - http://eudml.org/doc/244227
ER -

References

top
  1. AMBROSETTI, A. - COTI ZELATI, V., Critical points with lack of compactness and singular dynamical systems. Ann. Mat. Pura e Appl., 149, 1987, 237-259. Zbl0642.58017MR932787DOI10.1007/BF01773936
  2. AMBROSETTI, A. - COTI ZELATI, V., Non collision orbits for a class of Keplerian-like potentials. Ann. Inst. H. Poincaré, 5, 1988, 287-295. Zbl0667.58055MR954474
  3. BAHRI, B. - RABINOWITZ, P. H., A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. Zbl0681.70018MR987301DOI10.1016/0022-1236(89)90078-5
  4. BENCI, V., A new approach to the Morse-Conley theory. In: G. F. DELL' ANTONIO - B. D'ONOFRIO (eds.), Proceedings on Recent advances in Hamiltonian systems. World Scientific, Singapore1987, 83-96. Zbl0663.70028MR902622
  5. BENCI, V. - GIANNONI, F., Closed geodesics on non compact Riemannian manifolds. Compt. Rend. Acad. Sc. Paris, 312, I, 1991, 857-861. Zbl0739.53038MR1108507
  6. BENCI, V. - GIANNONI, F., On the closed geodesics on non compact Riemannian manifolds. Preprint. 
  7. CAPOZZI, A. - FORTUNATO, D. - SALVATORE, A., Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl., 124, 1987, 482-494. Zbl0664.34053MR887004DOI10.1016/0022-247X(87)90009-6
  8. CAPOZZI, A. - GRECO, C. - SALVATORE, A., Lagrangian systems in the presence of singularities. Proc. Amer. Math. Soc., 102, 1988, 125-130. Zbl0664.34054MR915729DOI10.2307/2046044
  9. DE GIOVANNI, M. - GIANNONI, F., Periodic solutions of dynamical systems with Newtonian type potentials. Ann. Scuola Norm. Sup. Pisa, 15, 1988, 467-494. Zbl0692.34050
  10. DE GIOVANNI, M. - GIANNONI, F. - MARINO, A., Dynamical systems with Newtonian type potentials. Atti Acc. Lincei Rend. fis., s. 8, 81, 1987, 271-278. Zbl0667.70010MR999819
  11. GIANNONI, F., Geodesics on non static Lorentz manifolds of Reissner-Nordstrôm type. Math. Annalen., 291, 1991, 383-401. Zbl0725.53048MR1133338DOI10.1007/BF01445215
  12. GORDON, W. B., Conservative dynamical systems involving strong forces. Trans. Amer. Mat. Soc.204, 1975, 113-135. Zbl0276.58005MR377983
  13. GRECO, C., Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. T.M.A., 12, 1988, 259-270. Zbl0648.34048MR928560DOI10.1016/0362-546X(88)90112-5
  14. MAJER, P., Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems. Ann. Inst. H. Poincaré, 8, 5, 1991, 459-476. Zbl0749.58046MR1136352
  15. VITERBO, C., Indice de Morse des points critiques obtenus par minimax. 1988, Ann. Inst. H. Poincaré, 5, 1988, 221-225. Zbl0695.58007MR954472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.