Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 5, page 459-476
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] A. Ambrosetti and V. Coti Zelati, Critical Points with Lack of Compactness and Singular Dynamical Systems, Ann. Mat. pura appl., (IV), Vol. CIL, 1987, pp. 237-259. Zbl0642.58017MR932787
- [2] A. Bahri and P.H. Rabinowitz, A Minimax Method for a Class of Hamiltonian Systems with Singular Potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. Zbl0681.70018MR987301
- [3] E. Fadell and S. Husseini, A Note on the Category of Free Loop Space, Proc. Am. Math. Soc., Vol. 107, 1989, pp. 527-536. Zbl0676.58019MR984789
- [4] M. Degiovanni and F. Giannoni, Dynamical Systems with Newtonian Type Potentials. Ann. Scu. Nor. Sup.Pisa, Vol. IV, 1988, pp. 467-494. Zbl0692.34050MR1015804
- [5] C, Greco, Periodic Solutions of a Class of Singular Hamiltonian Systems, Nonlinear Analysis, T.M.A., Vol. 12, 1988, pp. 259-270. Zbl0648.34048MR928560
- [6] W.B. Gordon, Conservative Dynamical System Involving Strong Forces, Trans. A.M.S., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
- [7] R. Palais, Lusternik-Schnirelman Theory on Banach Manifolds, Topology, Vol. 5, 1969, pp. 115-132. Zbl0143.35203MR259955
- [8] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. in Math., Vol. 65, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785