Non-collision orbits for a class of keplerian-like potentials

Antonio Ambrosetti; Vittorio Coti Zelati

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 3, page 287-295
  • ISSN: 0294-1449

How to cite

top

Ambrosetti, Antonio, and Coti Zelati, Vittorio. "Non-collision orbits for a class of keplerian-like potentials." Annales de l'I.H.P. Analyse non linéaire 5.3 (1988): 287-295. <http://eudml.org/doc/78154>.

@article{Ambrosetti1988,
author = {Ambrosetti, Antonio, Coti Zelati, Vittorio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Keplerian-like potential; T-periodic solutions; non-collision solution},
language = {eng},
number = {3},
pages = {287-295},
publisher = {Gauthier-Villars},
title = {Non-collision orbits for a class of keplerian-like potentials},
url = {http://eudml.org/doc/78154},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Ambrosetti, Antonio
AU - Coti Zelati, Vittorio
TI - Non-collision orbits for a class of keplerian-like potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 3
SP - 287
EP - 295
LA - eng
KW - Keplerian-like potential; T-periodic solutions; non-collision solution
UR - http://eudml.org/doc/78154
ER -

References

top
  1. [0] A. Ambrosetti and V. CotiZELATI, Solutions périodiques sans collision pour une classe de potentiels de type Keplerien, C.R. Acad. Sci. Paris, 305, 1987, pp. 813-815. Zbl0639.34038MR923205
  2. [1] A. Ambrosetti and V. CotiZelati, Critical Points with Lack of Compactness and Singular Dynamical Systems, Annali di Matematica Pura ed Applicata (to appear). Zbl0642.58017MR932787
  3. [2] A. Ambrosetti and V. CotiZELATI, Periodic Solutions of Singular Dynamical Systems, Proceed. NATO ARW "Periodic Solutions of Hamiltonian Systems and Related Topics", Il Ciocco, Italy, 1986 (to appear). Zbl0632.34042MR920605
  4. [3] A. Capozzi, C. Greco and A. Salvatore, Lagrangian Systems in Presence of Singularities, preprint Universitá di Bari, 1985. Zbl0664.34054MR915729
  5. [4] C. Coti Zelati, Remarks on Dynamical Systems with Weak-Forces, Manuscripta Math., Vol. 57, 1987, pp. 417-424. Zbl0606.58039MR878132
  6. [5] M. Degiovanni, F. Giannoni and A. Marino, Dynamical Systems with Newtonian Potentials, Proceed. NATO ARW "Periodic Solutions of Hamiltonian Systems and Related Topics", Il Ciocco,Italy , 1986 (to appear). 
  7. [6] W. Gordon, Conservative Dynamical Systems Involving Strong Forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
  8. [7] W. Gordon, A Minimizing Property of Keplerian Orbits, Am. Journ. of Math., Vol. 99, 1977, pp. 961-971. Zbl0378.58006MR502484
  9. [8] C. Greco, Periodic Solutions of a Class of Singular Hamiltonian Systems, preprint, Università di Bari, 1986. MR928560
  10. [9] W. Klingenberg, Lectures on Closed Geodesics, Springer-Verlag, Berlin, 1978. Zbl0397.58018MR478069

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.