Non-collision orbits for a class of keplerian-like potentials
Antonio Ambrosetti; Vittorio Coti Zelati
Annales de l'I.H.P. Analyse non linéaire (1988)
- Volume: 5, Issue: 3, page 287-295
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAmbrosetti, Antonio, and Coti Zelati, Vittorio. "Non-collision orbits for a class of keplerian-like potentials." Annales de l'I.H.P. Analyse non linéaire 5.3 (1988): 287-295. <http://eudml.org/doc/78154>.
@article{Ambrosetti1988,
author = {Ambrosetti, Antonio, Coti Zelati, Vittorio},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Keplerian-like potential; T-periodic solutions; non-collision solution},
language = {eng},
number = {3},
pages = {287-295},
publisher = {Gauthier-Villars},
title = {Non-collision orbits for a class of keplerian-like potentials},
url = {http://eudml.org/doc/78154},
volume = {5},
year = {1988},
}
TY - JOUR
AU - Ambrosetti, Antonio
AU - Coti Zelati, Vittorio
TI - Non-collision orbits for a class of keplerian-like potentials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 3
SP - 287
EP - 295
LA - eng
KW - Keplerian-like potential; T-periodic solutions; non-collision solution
UR - http://eudml.org/doc/78154
ER -
References
top- [0] A. Ambrosetti and V. CotiZELATI, Solutions périodiques sans collision pour une classe de potentiels de type Keplerien, C.R. Acad. Sci. Paris, 305, 1987, pp. 813-815. Zbl0639.34038MR923205
- [1] A. Ambrosetti and V. CotiZelati, Critical Points with Lack of Compactness and Singular Dynamical Systems, Annali di Matematica Pura ed Applicata (to appear). Zbl0642.58017MR932787
- [2] A. Ambrosetti and V. CotiZELATI, Periodic Solutions of Singular Dynamical Systems, Proceed. NATO ARW "Periodic Solutions of Hamiltonian Systems and Related Topics", Il Ciocco, Italy, 1986 (to appear). Zbl0632.34042MR920605
- [3] A. Capozzi, C. Greco and A. Salvatore, Lagrangian Systems in Presence of Singularities, preprint Universitá di Bari, 1985. Zbl0664.34054MR915729
- [4] C. Coti Zelati, Remarks on Dynamical Systems with Weak-Forces, Manuscripta Math., Vol. 57, 1987, pp. 417-424. Zbl0606.58039MR878132
- [5] M. Degiovanni, F. Giannoni and A. Marino, Dynamical Systems with Newtonian Potentials, Proceed. NATO ARW "Periodic Solutions of Hamiltonian Systems and Related Topics", Il Ciocco,Italy , 1986 (to appear).
- [6] W. Gordon, Conservative Dynamical Systems Involving Strong Forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. Zbl0276.58005MR377983
- [7] W. Gordon, A Minimizing Property of Keplerian Orbits, Am. Journ. of Math., Vol. 99, 1977, pp. 961-971. Zbl0378.58006MR502484
- [8] C. Greco, Periodic Solutions of a Class of Singular Hamiltonian Systems, preprint, Università di Bari, 1986. MR928560
- [9] W. Klingenberg, Lectures on Closed Geodesics, Springer-Verlag, Berlin, 1978. Zbl0397.58018MR478069
Citations in EuDML Documents
top- Kazunaga Tanaka, Homoclinic orbits for a singular second order hamiltonian system
- Susanna Terracini, Multiplicity of periodic solution with prescribed energy to singular dynamical systems
- Kazunaga Tanaka, Non-collision solutions for a second order singular hamiltonian system with weak force
- Addolorata Salvatore, Multiple periodic solutions for Hamiltonian systems with singular potential
- Claude Viterbo, Orbites périodiques dans le problème des trois corps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.