A variationally consistent generalized variable formulation of the elastoplastic rate problem

Claudia Comi; Umberto Perego

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1991)

  • Volume: 2, Issue: 2, page 177-190
  • ISSN: 1120-6330

Abstract

top
The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.

How to cite

top

Comi, Claudia, and Perego, Umberto. "A variationally consistent generalized variable formulation of the elastoplastic rate problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.2 (1991): 177-190. <http://eudml.org/doc/244248>.

@article{Comi1991,
abstract = {The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.},
author = {Comi, Claudia, Perego, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Plasticity; Finite elements; Generalized variables; Extremum properties; generalized variables; extremum properties; convexity of generalized yield functions; unconstrained saddle point problem; Lagrange multiplier method; kinematic minimum principle; min-max conditions; set of algebraic governing relations},
language = {eng},
month = {6},
number = {2},
pages = {177-190},
publisher = {Accademia Nazionale dei Lincei},
title = {A variationally consistent generalized variable formulation of the elastoplastic rate problem},
url = {http://eudml.org/doc/244248},
volume = {2},
year = {1991},
}

TY - JOUR
AU - Comi, Claudia
AU - Perego, Umberto
TI - A variationally consistent generalized variable formulation of the elastoplastic rate problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/6//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 2
SP - 177
EP - 190
AB - The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.
LA - eng
KW - Plasticity; Finite elements; Generalized variables; Extremum properties; generalized variables; extremum properties; convexity of generalized yield functions; unconstrained saddle point problem; Lagrange multiplier method; kinematic minimum principle; min-max conditions; set of algebraic governing relations
UR - http://eudml.org/doc/244248
ER -

References

top
  1. OWEN, D. R. J. - HINTON, E., Finite elements in plasticity. Pineridge Press, Swansea1980. Zbl0482.73051MR607503
  2. CORRADI, L., On compatible finite element models for elastic plastic analysis. Meccanica, vol. 13, 1978, 133-150. Zbl0417.73073
  3. CORRADI, L., A displacement formulation for the finite element elastic-plastic problem. Meccanica, vol. "18, 1983, 77-91. Zbl0519.73072
  4. PRAGER, W., The general theory of limit design. Proceedings of the 8th Intern. Conf. Appl. Mech. (Istanbul 1952), vol. 2, 1956, 65-72. 
  5. MAIER, G., On elastoplastic analysis by boundary elements. Mech. Res. Comm., vol. 10, 1983, 45-52. Zbl0511.73090
  6. MAIER, G. - NAPPI, A., On bounding post-shakedown quantities by the boundary element method. Engineering Analysis, vol. 1, 1984, 223-229. 
  7. COMI, C. - MAIER, G., Extremum problem convergence and stability theorems for the finite increment in elastic-plastic boundary element analysis. To appear. Zbl0755.73096
  8. POLIZZOTTO, C., An energy approach to the boundary element method. Part II: elastic-plastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69, 1988, 263-276. Zbl0629.73070MR969219DOI10.1016/0045-7825(88)90043-6
  9. SIMO, J. C. - HUGHES, T. J. R., On the variational formulation of assumed strain method. J. Appl. Mech., vol. 53, 1986, 51-54. Zbl0592.73019MR832667DOI10.1115/1.3171737
  10. SIMO, J. C. - KENNEDY, J. G. - TAYLOR, R. L., Complementary mixed finite element formulations for elastoplasticity. Comp. Meth. Appl. Mech. Eng., vol. 74, 1989, 177-206. Zbl0687.73064MR1020622DOI10.1016/0045-7825(89)90102-3
  11. COMI, C. - MAIER, G. - PEREGO, U., Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. To appear. Zbl0761.73107MR1162380DOI10.1016/0045-7825(92)90133-5
  12. CAPURSO, M. - MAIER, G., Incremental elastoplastic analysis and quadratic optimization. Meccanica, vol. 2, 1970, 107-116. Zbl0198.58301
  13. HALPHEN, B. - NGUYEN, Q. S., Sur les matériaux standards généralisés. J. de Mécanique, vol. 14, 1975, 39-63. Zbl0308.73017MR416177
  14. LEMAITRE, J. - CHABOCHE, J. L., Mécanique des matériaux solides. Dunod, Paris1985. 
  15. COMI, C. - MAIER, G., Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Eur. J. Mech., A/Solids, vol. 9, 1990, 563-585. Zbl0807.73079MR1082827

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.