A variationally consistent generalized variable formulation of the elastoplastic rate problem
- Volume: 2, Issue: 2, page 177-190
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topComi, Claudia, and Perego, Umberto. "A variationally consistent generalized variable formulation of the elastoplastic rate problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.2 (1991): 177-190. <http://eudml.org/doc/244248>.
@article{Comi1991,
abstract = {The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.},
author = {Comi, Claudia, Perego, Umberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Plasticity; Finite elements; Generalized variables; Extremum properties; generalized variables; extremum properties; convexity of generalized yield functions; unconstrained saddle point problem; Lagrange multiplier method; kinematic minimum principle; min-max conditions; set of algebraic governing relations},
language = {eng},
month = {6},
number = {2},
pages = {177-190},
publisher = {Accademia Nazionale dei Lincei},
title = {A variationally consistent generalized variable formulation of the elastoplastic rate problem},
url = {http://eudml.org/doc/244248},
volume = {2},
year = {1991},
}
TY - JOUR
AU - Comi, Claudia
AU - Perego, Umberto
TI - A variationally consistent generalized variable formulation of the elastoplastic rate problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/6//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 2
SP - 177
EP - 190
AB - The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.
LA - eng
KW - Plasticity; Finite elements; Generalized variables; Extremum properties; generalized variables; extremum properties; convexity of generalized yield functions; unconstrained saddle point problem; Lagrange multiplier method; kinematic minimum principle; min-max conditions; set of algebraic governing relations
UR - http://eudml.org/doc/244248
ER -
References
top- OWEN, D. R. J. - HINTON, E., Finite elements in plasticity. Pineridge Press, Swansea1980. Zbl0482.73051MR607503
- CORRADI, L., On compatible finite element models for elastic plastic analysis. Meccanica, vol. 13, 1978, 133-150. Zbl0417.73073
- CORRADI, L., A displacement formulation for the finite element elastic-plastic problem. Meccanica, vol. "18, 1983, 77-91. Zbl0519.73072
- PRAGER, W., The general theory of limit design. Proceedings of the 8th Intern. Conf. Appl. Mech. (Istanbul 1952), vol. 2, 1956, 65-72.
- MAIER, G., On elastoplastic analysis by boundary elements. Mech. Res. Comm., vol. 10, 1983, 45-52. Zbl0511.73090
- MAIER, G. - NAPPI, A., On bounding post-shakedown quantities by the boundary element method. Engineering Analysis, vol. 1, 1984, 223-229.
- COMI, C. - MAIER, G., Extremum problem convergence and stability theorems for the finite increment in elastic-plastic boundary element analysis. To appear. Zbl0755.73096
- POLIZZOTTO, C., An energy approach to the boundary element method. Part II: elastic-plastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69, 1988, 263-276. Zbl0629.73070MR969219DOI10.1016/0045-7825(88)90043-6
- SIMO, J. C. - HUGHES, T. J. R., On the variational formulation of assumed strain method. J. Appl. Mech., vol. 53, 1986, 51-54. Zbl0592.73019MR832667DOI10.1115/1.3171737
- SIMO, J. C. - KENNEDY, J. G. - TAYLOR, R. L., Complementary mixed finite element formulations for elastoplasticity. Comp. Meth. Appl. Mech. Eng., vol. 74, 1989, 177-206. Zbl0687.73064MR1020622DOI10.1016/0045-7825(89)90102-3
- COMI, C. - MAIER, G. - PEREGO, U., Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. To appear. Zbl0761.73107MR1162380DOI10.1016/0045-7825(92)90133-5
- CAPURSO, M. - MAIER, G., Incremental elastoplastic analysis and quadratic optimization. Meccanica, vol. 2, 1970, 107-116. Zbl0198.58301
- HALPHEN, B. - NGUYEN, Q. S., Sur les matériaux standards généralisés. J. de Mécanique, vol. 14, 1975, 39-63. Zbl0308.73017MR416177
- LEMAITRE, J. - CHABOCHE, J. L., Mécanique des matériaux solides. Dunod, Paris1985.
- COMI, C. - MAIER, G., Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Eur. J. Mech., A/Solids, vol. 9, 1990, 563-585. Zbl0807.73079MR1082827
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.