On integral representation, relaxation and homogenization for unbounded functionals
Luciano Carbone; Riccardo De Arcangelis
- Volume: 8, Issue: 2, page 129-135
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCarbone, Luciano, and De Arcangelis, Riccardo. "On integral representation, relaxation and homogenization for unbounded functionals." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 8.2 (1997): 129-135. <http://eudml.org/doc/244328>.
@article{Carbone1997,
abstract = {A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given.},
author = {Carbone, Luciano, De Arcangelis, Riccardo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Integral representation; Relaxation; Homogenization; integral representation; relaxation; homogenization; variational functionals},
language = {eng},
month = {7},
number = {2},
pages = {129-135},
publisher = {Accademia Nazionale dei Lincei},
title = {On integral representation, relaxation and homogenization for unbounded functionals},
url = {http://eudml.org/doc/244328},
volume = {8},
year = {1997},
}
TY - JOUR
AU - Carbone, Luciano
AU - De Arcangelis, Riccardo
TI - On integral representation, relaxation and homogenization for unbounded functionals
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1997/7//
PB - Accademia Nazionale dei Lincei
VL - 8
IS - 2
SP - 129
EP - 135
AB - A theory of integral representation, relaxation and homogenization for some types of variational functionals taking extended real values and possibly being not finite also on large classes of regular functions is presented. Some applications to gradient constrained relaxation and homogenization problems are given.
LA - eng
KW - Integral representation; Relaxation; Homogenization; integral representation; relaxation; homogenization; variational functionals
UR - http://eudml.org/doc/244328
ER -
References
top- AMBROSIO, L. - DAL MASO, G., On the relaxation in , of quasi-convex integrals. J. Funct. Anal., 109, 1992, 76-97. Zbl0769.49009MR1183605DOI10.1016/0022-1236(92)90012-8
- BENSOUSSAN, A. - LIONS, J. L. - PAPANICOLAOU, G., Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, 5, North-Holland, Amsterdam1978. Zbl0404.35001MR503330
- BOUCHITTÉ, G. - DAL MASO, G., Integral representation and relaxation of convex local functional on . Ann. Sc. Norm. Sup. Pisa, 20, 1993, 483-533. Zbl0802.49008MR1267597
- BREZIS, H. - SIBONY, M., Equivalence de deux inéquations variationnelles et applications. Arch. Rational Mech. Anal., 41, 1971, 254-265. Zbl0214.11104MR346345
- BUTTAZZO, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series, 207, Longman Scientific & Technical, Harlow1989. Zbl0669.49005MR1020296
- CARBONE, L. - SALERNO, S., Further results on a problem of homogenization with constraints on the gradient. J. Analyse Math., 44, 1984-85, 1-20. Zbl0574.35006MR801284DOI10.1007/BF02790187
- CORBO ESPOSITO, A. - DE ARCANGELIS, R., Homogenization of Dirichlet problems with nonnegative bounded constraints on the gradient. J. Analyse Math., 64, 1994, 53-96. Zbl0822.49012MR1303508DOI10.1007/BF03008405
- CORBO ESPOSITO, A. - DE ARCANGELIS, R., A characterization of families of function sets described by constraints on the gradient. Ann. Inst. Henri Poincaré - Analyse non linéaire, 11, 1994, 553-609. Zbl0839.49007MR1302280
- DAL MASO, G., An introduction to -convergence. Progress in Nonlinear Differential Equations and Their Applications, 8, Birkhäuser, Boston-Basel-Berlin1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Acc. Lincei Rend, fis., s. 8, 58, 1975, 842-850. Zbl0339.49005MR448194
- DE GIORGI, E. - LETTA, G., Une notion générale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Sc. Norm. Sup. Pisa, 4, 1977, 61-99. Zbl0405.28008MR466479
- DUVAUT, G. - LIONS, J. L., Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften, 219, Springer-Verlag, Berlin-Heidelberg-New York1976. Zbl0331.35002MR521262
- EKELAND, I. - TEMAM, R., Convex Analysis and Variational Problems. Studies in Mathematics and its Applications, 1, North-Holland, Amsterdam1976. Zbl0322.90046MR463994
- GLOWINSKI, R. - LANCHON, H., Torsion élastoplastique d'une barre cylindrique de section multiconnexe. J. Mécanique, 12, 1973, 151-171. Zbl0273.73023MR363114
- GOFFMAN, C. - SERRIN, J., Sublinear functions of measures and variational integrals. Duke Math. J., 31, 1964, 159-178. Zbl0123.09804MR162902
- RAUCH, J. - TAYLOR, M., Electrostatic screening. J. Math. Phys., 16, 1975, 284-288. MR382834
Citations in EuDML Documents
top- Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello, Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set
- Luciano Carbone, Antonio Corbo Esposito, Riccardo De Arcangelis, Homogenization of Neumann problems for unbounded integral functionals
- Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, Antonio Gaudiello, Homogenization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints set
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.