Integral representation and relaxation of convex local functionals on B V ( Ω )

Guy Bouchitté; Gianni Dal Maso

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 4, page 483-533
  • ISSN: 0391-173X

How to cite

top

Bouchitté, Guy, and Dal Maso, Gianni. "Integral representation and relaxation of convex local functionals on $BV(\Omega )$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1993): 483-533. <http://eudml.org/doc/84158>.

@article{Bouchitté1993,
author = {Bouchitté, Guy, Dal Maso, Gianni},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {relaxation; BV-spaces},
language = {eng},
number = {4},
pages = {483-533},
publisher = {Scuola normale superiore},
title = {Integral representation and relaxation of convex local functionals on $BV(\Omega )$},
url = {http://eudml.org/doc/84158},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Bouchitté, Guy
AU - Dal Maso, Gianni
TI - Integral representation and relaxation of convex local functionals on $BV(\Omega )$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 483
EP - 533
LA - eng
KW - relaxation; BV-spaces
UR - http://eudml.org/doc/84158
ER -

References

top
  1. [1] G. Alberti, Rank one properties for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, to appear. Zbl0791.26008MR1215412
  2. [2] G. Alberti - G. Buttazzo, Integral representation of functionals defined on Sobolev spaces. Composite media and homogenization theory, 1-12Birkhäuser, Boston, 1991. Zbl0736.46016MR1145741
  3. [3] G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl.(4) 135 (1983), 293-318. Zbl0572.46023MR750538
  4. [4] G. Anzellotti, Traces of bounded vectorfields and the divergence theorem. Preprint Univ. Trento, 1983. MR750538
  5. [5] H. Attouch, Variational convergence for functions and operators. Pitman, London, 1984. Zbl0561.49012MR773850
  6. [6] G. Bouchitié, Représentation intégrale de fonctionelles convexes sur un espace de mesures. II. Cas de l'épi-convergence. Ann. Univ. Ferrara Sez.VII (N.S.) 33 (1987), 113-156. Zbl0721.49041MR958390
  7. [7] G. Bouchitté - M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal.80 (1988), 398-420. Zbl0662.46009MR961907
  8. [8] G. Buttazzo, Semicontinuity, relaxation and integral representation problems in the calculus of variations. Pitman Res. Notes in Math., Longman, Harlow, 1989. Zbl0669.49005
  9. [9] G. Buttazzo - G. Dal Maso, Γ-limits of integral functionals. J. Analyse Math.37 (1980), 145-185. Zbl0446.49012
  10. [10] G. Buttazzo - G. Dal Maso, Integral representation and relaxation of local functionals. Nonlinear Anal.9 (1985), 515-532. Zbl0527.49008MR794824
  11. [11] G. Buttazzo - L. Freddi, Functionals defined on measures and applications to non equi-uniformly elliptic problems. Ann. Mat. Pura Appl. (4) 159 (1991), 133-149. Zbl0767.35010MR1145094
  12. [12] L. Carbone - C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. (4) 122 (1979), 1-60. Zbl0474.49016
  13. [13] M. Carriero - E. Pascali, Γ-convergenza di integrali non negativi maggiorati da funzionali del tipo dell'area. Ann. Univ. Ferrara Sez.VII (N.S.) 24 (1978), 51-64. Zbl0408.49018
  14. [14] C. Castaing - M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR467310
  15. [15] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscripta Math.30 (1980), 387-416. Zbl0435.49016
  16. [16] G. Dal Maso - L. Modica, A general theory of variational functionals. Topics in functional analysis (1980-1981), 149-221, Quaderni Scuola Norm. Sup.Pisa, Pisa, 1981. Zbl0493.49005MR671757
  17. [17] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat (6) 8 (1975), 277-294. Zbl0316.35036MR375037
  18. [18] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850, and Rend. Sem. Mat. Brescia3 (1979), 63-101. Zbl0339.49005MR448194
  19. [19] N. Dunford - J.T. Schwartz, Linear operators. Interscience, New York, 1957. Zbl0084.10402
  20. [20] I. Ekeland - R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  21. [21] A. Gavioli, Necessary and sufficient conditions for the lower semicontinuity of certain integral functionals. Ann. Univ. Ferrara Sez.VII (N.S.), 34 (1988), 219-236. Zbl0709.49005MR1015561
  22. [22] M. Giaquinta - G. Modica - J. Soucek, Functionals with linear growth in the calculus of variations. I. Comment. Math. Univ. Carolin.20 (1979), 143-156. Zbl0409.49006MR526154
  23. [23] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  24. [24] C. Goffman, J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J.31 (1964), 159-178. Zbl0123.09804MR162902
  25. [25] P. Marcellini - C. Sbordone, Semicontinuity problems in the calculus of variations. Nonlinear Anal.4 (1980), 241-257. Zbl0537.49002MR563807
  26. [26] V.G. Maz'ya, Sobolev spaces. Springer-Verlag, Berlin, 1985. Zbl0692.46023MR817985
  27. [27] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
  28. [28] R.T. Rockafellar, Convex integral functionals and duality. Contributions to Nonlinear Functional Analysis, 215-236. Academic Press, New York, 1971. Zbl0295.49006MR390870
  29. [29] R.T. Rockafellar, Conjugate duality and optimization. CBMS-NSF Regional Conf. Ser. in Appl. Math. 16, SIAM, Philadelphia, 1974. Zbl0296.90036MR373611
  30. [30] C. Sbordone, Su alcune applicazioni di un tipo di convergenza variazionale. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 2 (1975), 617-638. Zbl0317.49012MR417753
  31. [31] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961), 139-167. Zbl0102.04601MR138018
  32. [32] L.M. Simon, Lectures on geometric measure theory. Proc. of the Centre for Mathematical Analysis (Canberra), Australian National University, 3, 1983. Zbl0546.49019MR756417
  33. [33] R. Temam, Problèmes mathematiques en plasticité. Gauthier-Villars, Paris, 1983. Zbl0547.73026MR711964
  34. [34] M. Valadier, Multi-applications measurables à valeurs convexes compactes. J. Math. Pures Appl.50 (1971), 265-297. Zbl0186.49703MR299752
  35. [35] A.I. Vol'pert - S.I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics. Martinus Nijhoff Publishers, Dordrecht, 1985. Zbl0564.46025MR785938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.