Integral representation and relaxation of convex local functionals on B V ( Ω )

Guy Bouchitté; Gianni Dal Maso

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 4, page 483-533
  • ISSN: 0391-173X

How to cite

top

Bouchitté, Guy, and Dal Maso, Gianni. "Integral representation and relaxation of convex local functionals on $BV(\Omega )$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.4 (1993): 483-533. <http://eudml.org/doc/84158>.

@article{Bouchitté1993,
author = {Bouchitté, Guy, Dal Maso, Gianni},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {relaxation; BV-spaces},
language = {eng},
number = {4},
pages = {483-533},
publisher = {Scuola normale superiore},
title = {Integral representation and relaxation of convex local functionals on $BV(\Omega )$},
url = {http://eudml.org/doc/84158},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Bouchitté, Guy
AU - Dal Maso, Gianni
TI - Integral representation and relaxation of convex local functionals on $BV(\Omega )$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 4
SP - 483
EP - 533
LA - eng
KW - relaxation; BV-spaces
UR - http://eudml.org/doc/84158
ER -

References

top
  1. [1] G. Alberti, Rank one properties for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A, to appear. Zbl0791.26008MR1215412
  2. [2] G. Alberti - G. Buttazzo, Integral representation of functionals defined on Sobolev spaces. Composite media and homogenization theory, 1-12Birkhäuser, Boston, 1991. Zbl0736.46016MR1145741
  3. [3] G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl.(4) 135 (1983), 293-318. Zbl0572.46023MR750538
  4. [4] G. Anzellotti, Traces of bounded vectorfields and the divergence theorem. Preprint Univ. Trento, 1983. MR750538
  5. [5] H. Attouch, Variational convergence for functions and operators. Pitman, London, 1984. Zbl0561.49012MR773850
  6. [6] G. Bouchitié, Représentation intégrale de fonctionelles convexes sur un espace de mesures. II. Cas de l'épi-convergence. Ann. Univ. Ferrara Sez.VII (N.S.) 33 (1987), 113-156. Zbl0721.49041MR958390
  7. [7] G. Bouchitté - M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal.80 (1988), 398-420. Zbl0662.46009MR961907
  8. [8] G. Buttazzo, Semicontinuity, relaxation and integral representation problems in the calculus of variations. Pitman Res. Notes in Math., Longman, Harlow, 1989. Zbl0669.49005
  9. [9] G. Buttazzo - G. Dal Maso, Γ-limits of integral functionals. J. Analyse Math.37 (1980), 145-185. Zbl0446.49012
  10. [10] G. Buttazzo - G. Dal Maso, Integral representation and relaxation of local functionals. Nonlinear Anal.9 (1985), 515-532. Zbl0527.49008MR794824
  11. [11] G. Buttazzo - L. Freddi, Functionals defined on measures and applications to non equi-uniformly elliptic problems. Ann. Mat. Pura Appl. (4) 159 (1991), 133-149. Zbl0767.35010MR1145094
  12. [12] L. Carbone - C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. (4) 122 (1979), 1-60. Zbl0474.49016
  13. [13] M. Carriero - E. Pascali, Γ-convergenza di integrali non negativi maggiorati da funzionali del tipo dell'area. Ann. Univ. Ferrara Sez.VII (N.S.) 24 (1978), 51-64. Zbl0408.49018
  14. [14] C. Castaing - M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. Zbl0346.46038MR467310
  15. [15] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscripta Math.30 (1980), 387-416. Zbl0435.49016
  16. [16] G. Dal Maso - L. Modica, A general theory of variational functionals. Topics in functional analysis (1980-1981), 149-221, Quaderni Scuola Norm. Sup.Pisa, Pisa, 1981. Zbl0493.49005MR671757
  17. [17] E. De Giorgi, Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rend. Mat (6) 8 (1975), 277-294. Zbl0316.35036MR375037
  18. [18] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), 842-850, and Rend. Sem. Mat. Brescia3 (1979), 63-101. Zbl0339.49005MR448194
  19. [19] N. Dunford - J.T. Schwartz, Linear operators. Interscience, New York, 1957. Zbl0084.10402
  20. [20] I. Ekeland - R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam, 1976. Zbl0322.90046MR463994
  21. [21] A. Gavioli, Necessary and sufficient conditions for the lower semicontinuity of certain integral functionals. Ann. Univ. Ferrara Sez.VII (N.S.), 34 (1988), 219-236. Zbl0709.49005MR1015561
  22. [22] M. Giaquinta - G. Modica - J. Soucek, Functionals with linear growth in the calculus of variations. I. Comment. Math. Univ. Carolin.20 (1979), 143-156. Zbl0409.49006MR526154
  23. [23] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984. Zbl0545.49018MR775682
  24. [24] C. Goffman, J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J.31 (1964), 159-178. Zbl0123.09804MR162902
  25. [25] P. Marcellini - C. Sbordone, Semicontinuity problems in the calculus of variations. Nonlinear Anal.4 (1980), 241-257. Zbl0537.49002MR563807
  26. [26] V.G. Maz'ya, Sobolev spaces. Springer-Verlag, Berlin, 1985. Zbl0692.46023MR817985
  27. [27] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, 1970. Zbl0193.18401MR274683
  28. [28] R.T. Rockafellar, Convex integral functionals and duality. Contributions to Nonlinear Functional Analysis, 215-236. Academic Press, New York, 1971. Zbl0295.49006MR390870
  29. [29] R.T. Rockafellar, Conjugate duality and optimization. CBMS-NSF Regional Conf. Ser. in Appl. Math. 16, SIAM, Philadelphia, 1974. Zbl0296.90036MR373611
  30. [30] C. Sbordone, Su alcune applicazioni di un tipo di convergenza variazionale. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 2 (1975), 617-638. Zbl0317.49012MR417753
  31. [31] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc.101 (1961), 139-167. Zbl0102.04601MR138018
  32. [32] L.M. Simon, Lectures on geometric measure theory. Proc. of the Centre for Mathematical Analysis (Canberra), Australian National University, 3, 1983. Zbl0546.49019MR756417
  33. [33] R. Temam, Problèmes mathematiques en plasticité. Gauthier-Villars, Paris, 1983. Zbl0547.73026MR711964
  34. [34] M. Valadier, Multi-applications measurables à valeurs convexes compactes. J. Math. Pures Appl.50 (1971), 265-297. Zbl0186.49703MR299752
  35. [35] A.I. Vol'pert - S.I. Hudjaev, Analysis in classes of discontinuous functions and equations of mathematical physics. Martinus Nijhoff Publishers, Dordrecht, 1985. Zbl0564.46025MR785938

NotesEmbed ?

top

You must be logged in to post comments.